Asymmetric Transfer Hydrogenation via Dynamic Kinetic Resolution for the Construction of Carbocyclic N3-Purine Nucleosides

  • Zhang Qiying ,
  • Zhang Yiming ,
  • Hao Erjun ,
  • Bai Juan ,
  • Qu Guirong ,
  • Guo Haiming
Expand
  • Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007

Received date: 2019-07-30

  Revised date: 2019-09-30

  Online published: 2019-10-25

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21602045, U1604283), and the Overseas Expertise Introduction Project for Discipline Innovation (111 Project, No. D17007).

Abstract

N3-Purine nucleoside can be employed as a potent dual inhibitor to inhibit viruses more effectively because it could be possibly recognized by both purine-and pyrimidine-metabolizing enzymes. Herein, an asymmetric transfer hydrogenation via dynamic kinetic resolution of rac-α-(purin-3-yl)cyclopentones has been developed to produce a wide range of carbocyclic N3-purine nucleosides in high yields and excellent stereoselectivities. Moreover, the catalytic system was suitable for rac-α-pyrimidinyl cyclopentones. With additional transformations, several 2'-F-, AcS-, N3-modified carbocyclic nucleosides could be obtained with good to excellent yields and excellent enantioselectivities.

Cite this article

Zhang Qiying , Zhang Yiming , Hao Erjun , Bai Juan , Qu Guirong , Guo Haiming . Asymmetric Transfer Hydrogenation via Dynamic Kinetic Resolution for the Construction of Carbocyclic N3-Purine Nucleosides[J]. Chinese Journal of Organic Chemistry, 2020 , 40(2) : 376 -383 . DOI: 10.6023/cjoc201907053

References

[1] (a) Zhou, H.; Zeng, X.; Ding, L.; Xie, Y.; Zhong, G. Org. Lett. 2015, 17, 2385.
(b) Trost, B. M.; Madsen, R.; Guile, S. D.; Brown, B. J. Am. Chem. Soc. 2000, 122, 5947.
(c) Kakuda, T. N. Clin. Ther. 2000, 22, 685.
(d) Boutureira, O.; Matheu, M. I.; Díaz, Y.; Castillón, S. Chem. Soc. Rev. 2013, 42, 5056.
(e) Forsman, J. J.; Leino, R. Chem. Rev. 2011, 111, 3334.
(f) Lebreton, J.; Escudier, J.-M.; Arzel, Len, C. Chem. Rev. 2010, 110, 3371.
(g) Amblard, F.; Cho, J. H.; Schinazi, R. F. Chem. Rev. 2009, 109, 4207.
(h) Liu, Y.; Guo, X.; Bai, P. Chin. J. Org. Chem. 2014, 34, 2202(in Chinese). (刘亚君, 郭翔海, 白鹏, 有机化学, 2014, 34, 2202.)
(i) Fan, X.-S; Zhang, X.-Y.; Wang, X.; Qu, G.-R. Chin. J. Org. Chem. 2008, 28, 1888(in Chinese). (范学森, 张新迎, 王霞, 渠桂荣, 有机化学, 2008, 28, 1888.)
[2] (a) Barral, K.; Courcambeck, J.; Pèpe, G.; Balzarini, J.; Neyts, J.; Clercq, E. D.; Camplo, M. J. Med. Chem. 2005, 48, 450.
(b) Keane, S. J.; Ford, A.; Mullins, N. D.; Maguire, N. M.; Legigan, T.; Balzarini, J.; Maguire, A. R. J. Org. Chem. 2015, 80, 2479.
(c) Gai, X.; Song, W.; Heng, S.; Yang, W. Chin. J. Integr. Tradit. West. Med. Liver Dis. 2005, 15, 50(in Chinese). (盖欣, 宋万玲, 桓树学, 杨文东, 中西医结合肝病杂志, 2005, 15, 50.)
[3] (a) Hu, L.; Ren, Y.; Ramström, O. J. Org. Chem. 2015, 80, 8478.
(b) Singh, U. S.; Mishra, R. C.; Shankar, R.; Chu, C. K. J. Org. Chem. 2014, 79, 3917.
(c) Caso, M. F.; D'Alonzo, D.; D'Errico, S.; Palumbo, G.; Guaragna, A. Org. Lett. 201517, 2626.
[4] (a) Silverman, R. B. The Organic Chemistry of Drug Design and Drug Action, Elsevier, Evanston, 2004.
(b) Kompis, I. M.; Islam, K.; Then, R. L. Chem. Rev. 2005, 105, 583.
(c) Lyon, M. A.; Ducruet, A. P.; Wipf, P.; Lazo, J. S. Nat. Rev. Drug Disc. 2002, 1, 961.
(d) Gangjee, A.; Li, W.; Yang, J.; Kisliuk, R. L. J. Med. Chem. 2008, 51, 68.
[5] (a) Jeong, L. S.; Lee, J. A. Antiviral Chem. Chemother. 2004, 15, 235.
(b) Liu, Y.; Guo, X.; Bai, P. Chin. J. Org. Chem. 2014, 34, 2202.
(c) Boutureira, O.; Matheu, M. I.; Díaz, Y.; Castillón, S. Chem. Soc. Rev. 2013, 42, 5056.
[6] (a) Xie, M.-S.; Wang, Y.; Li, J.-P.; Du, C.; Zhang, Y.-Y.; Hao, E.-J.; Zhang, Y.-M.; Qu, G.-R.; Guo, H.-M. Chem. Commun. 2015, 51, 12451.
(b) Huang, K.-X.; Xie, M.-S.; Zhang, Q.-Y.; Niu, H.-Y.; Qu, G.-R.; Guo, H.-M. Org. Lett. 2018, 20, 5398.
(c) Wang, J.; Zhang, Q.-Y.; Xie, M.-S.; Wang, D.-C.; Qu, G.-R.; Guo, H.-M. Org. Lett. 2018, 20, 6578.
(d) Gao, Y.-W.; Niu, H.; Zhang, Q.-Y.; Xie, M.; Qu, G.; Guo, H. Adv. Synth. Catal. 2018, 360, 2813.
[7] (a) Bhat, B.; Neelima, N. J.; Leonard, H.; Robinson, A.; Wang, H.-J. J. Am. Chem. Soc. 1996, 118, 3065.
(b) Leonard, N. J.; Laursenf, R. A. Biosci., Biotechnol., Biochem. 1965, 4, 354.
[8] (a) Sadler, J. M.; Mosley, S. L.; Dorgan, K. M.; Zhou, Z. S.; Seley-Radtke, K. L. Bioorg. Med. Chem. 2009, 17, 5520.
(b) Jiang, M. X.-W.; Warshakoon, N. C.; Miller, M. J. J. Org. Chem. 2005, 70, 2824.
[9] (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
(b) Liu, S.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem. 2007, 119, 7650; Angew. Chem., Int. Ed. 2007, 46, 7506.
(c) Liu, S.; Xie, J.-H.; Li, W.; Kong, W.-L.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2009, 11, 4994.
(d) Zhou, Q.; Xie, J.; Zhu, S.; Wang, L. Tianjin Sci. Technol. 2014, 41, 11(in Chinese). (周其林, 谢建华, 朱守非, 王立新, 天津科技, 2014, 41, 11.)
[10] (a) Zhang, Q.; Ma, B.-W.; Wang, Q.-.Q.; Wang, X.-X.; Hu, X.; Xie, M.-S.; Qu, G.-R.; Guo, H.-M. Org. Lett. 2014, 16, 2014.
(b) Vyas, V. K.; Bhanage, B. M. Org. Lett. 2016, 18, 6436.
(c) Matsunami, A.; Ikeda, M.; Nakamura, H.; Yoshida, M.; Kuwata, S.; Kayaki, Y. Org. Lett. 2018, 20, 5213.
(d) Vyas, V. K.; Bhanage, B. M. Asian J. Org. Chem. 2018, 7, 346.
(e) Liu, Q.; Wang, C.; Zhou, H.; Wang, O.; Lv, J.; Cao, Lu; Fu, Y. Org. Lett. 2018, 20, 971.
[11] (a) Zhang, Y.-M.; Zhang, Q.-Y.; Wang, D.-C.; Xie, M.-S.; Qu, G.-R.; Guo, H.-M. Org. Lett. 2019, 21, 2998.
(b) Sun, H.-L.; Chen, F.; Xie, M.-S.; Guo, H.-M.; Qu, G.-R.; He, Y.-M.; Fan, Q.-H. Org. Lett. 2016, 18, 2260.
[12] (a) Chan, A. S. C.; Pluth, J. J.; Halpern, J. J. Am. Chem. Soc. 1980, 102, 5952.
(b) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932.
Outlines

/