Synthesis and Glycosidase Inhibition Activity of an Amphiphilic Fatty-Deoxynojirimycin Derivative

  • Li Min ,
  • Liu Maohua ,
  • Wang Qi ,
  • Wang Kerang ,
  • Li Xiaoliu
Expand
  • a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002;
    b College of Chemistry and Chemical Engineering, Xingtai University, Xingtai, Hebei 054001

Received date: 2019-08-14

  Revised date: 2019-09-24

  Online published: 2019-10-25

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21572044, 21778013), the Natural Science Foundation of Hebei Province (No. B2016201254), and the Foundation of Hebei Education Department (No. QN2018310).

Abstract

An amphiphilic derivative FA-DNJ-C6 with deoxynojirimycin modification was synthesized. The self-assembly behavior of FA-DNJ-C6 was studied by a surface tension test, dynamic light scattering test (DLS) and transmission electron microscopy (TEM). FA-DNJ-C6 formed stable supramolecular self-assembly in aqueous solution. Furthermore, the glycosidase inhibition activities of FA-DNJ-C6 were studied. FA-DNJ-C6 as multivalent glycosidase inhibitor showed potent glycosidase effect against α-mannosidase with Ki value of (0.107±0.021) μmol/L, an increase of approximately 339-fold compared with the control drug of miglitol, which was due to the multivalent binding sites in α-mannosidase.

Cite this article

Li Min , Liu Maohua , Wang Qi , Wang Kerang , Li Xiaoliu . Synthesis and Glycosidase Inhibition Activity of an Amphiphilic Fatty-Deoxynojirimycin Derivative[J]. Chinese Journal of Organic Chemistry, 2019 , 39(12) : 3446 -3453 . DOI: 10.6023/cjoc201908022

References

[1] Lahin, R.; Ansan, A. A.; Vankar, Y. D. Chem. Soc. Rev. 2013, 42, 5102.
[2] Van de Laar, F. A. P.; Lucassen, L.; Akkermans, R. P.; Van de Lisdonk, E. H.; Rutten, G. E.; Van Weel, C. Cochrane Database Syst. Rev. 2005, 18, CD003639.
[3] Kato, A.; Nakagome, I.; Sato, K.; Yamamoto, A.; Adachi, I. R.; Nash, J.; Fleet, G. W.; Natori, Y.; Watanabe, Y.; Imahori, T.; Yoshimura, Y.; Takahata, H.; Hirono, S. Org. Biomol. Chem. 2016, 14, 1039.
[4] (a) Pili, R.; Chang, J.; Partis, R. A.; Mueller, R. A.; Chrest, F. J.; Passaniti, A. Cancer Res. 1995, 55, 2920.
(b) Wang, R. J.; Yang, C. H.; Hu, M. L. J. Agric. Food Chem. 2010, 58, 8988.
[5] (a) Illescas, B. M.; Rojo, J.; Delgado, R.; Martín, N. J. Am. Chem. Soc. 2017, 139, 6018.
(b) Chavan, S. R.; Gavale, K. S.; Khan, A.; Joshi, R.; Kumbhar, N.; Chakravarty, D.; Dhavale, D. D. ACS Omega 2017, 2, 7203.
(c) Kiappes, J. L.; Hill, M. L.; Alonzi, D. S.; Miller, J. L.; Iwaki, R.; Sayce, A. C.; Caputo, A. T.; Kato A.; Zitzmann, N. ACS Chem. Biol. 2018, 13, 60.
[6] (a) Choukhi, A.; Ung, S.; Wychowski, C.; Dubuisson, J. J. Virol. 1998, 72, 3851.
(b) Babu, Y. S.; Chand, P.; Kotian, P. L. Annu. Rep. Med. Chem. 2006, 41, 287.
[7] (a) Howard, E.; Cousido-Siah, A.; Lepage, M. L.; Schneider, J. P.; Bodlenner, A.; Mitschler, A.; Meli, A.; Izzo, I.; Alvarez, A.; Podjarny, A.; Compain, P. Angew. Chem., Int. Ed. 2018, 57, 8002.
(b) Compain, P.; Bodlenner, A. ChemBioChem 2014, 15, 1239.
(c) Kanfar, N.; Bartolami, E.; Zelli, R.; Marra, A.; Winum, J. Y.; Ulrich, S.; Dumy, P. Org. Biomol. Chem. 2015, 13, 9894.
(d) Ortiz Mellet, C.; Nierengarten, J. F.; García Fernández, J. M. J. Mater. Chem. B 2017, 5, 6428.
(e) Zhang, H. C.; Hao, A. Y.; Du, G. Y.; Shen, J. Chin. J. Org. Chem. 2008, 28, 1515(in Chinese). (张华承, 郝爱友, 杜光焰, 申健, 有机化学, 2008, 28, 1515.)
[8] (a) Rísquez-Cuadro, R.; Fernández, J. M. G.; Nierengarten, J. F.; Mellet, C. O. Chem.-Eur. J. 2013, 19, 16791.
(b) Joosten, A.; Schneider, J. P.; Lepage, M. L.; Tarnus, C.; Bodlenner A.; Compain, P. Eur. J. Org. Chem. 2014, 1866.
(c) Decroocq, C.; Rodríguez-Lucena, D.; Russo, V.; Barragán, T. M.; Mellet, C. O.; Compain, P. Chem.-Eur. J. 2011, 17, 13825.
(d) Alvarez-Dorta, D.; King, D. T.; Legigan, T.; Ide, D.; Adachi, I.; Deniaud, D.; Désiré, J.; Kato, A.; Vocadlo, D.; Gouin, S. G.; Blériot, Y. Chem.-Eur. J. 2017, 23, 9022.
(e) Brissonnet, Y.; Ladevèze, S.; Tezé, D.; Fabre, E.; Deniaud, D.; Daligault, F.; Tellier, C.; Sěsták, S.; Remaud-Simeon, M.; Potocki-Veronese G.; Gouin, S. G. Bioconjugate Chem. 2015, 26, 766.
(f) Lepage, M. L.; Schneider, J. P.; Bodlenner, A.; Meli, A.; Schmitt, F. D.; Tarnus, M.; Nguyen-Huynh, C.; Francois, N. T.; Riccardis, Y. N.; Lize-Wagner, E. L.; Birck, C.; Cousido-Siah, A.; Podjarny, A.; Izzo, I.; Compain, P. Chem.-Eur. J. 2016, 22, 5151.
[9] Decroocq, C.; Joosten, A.; Sergent, R.; Barragán, T. M.; Mellet, C. O.; Compain, P. ChemBioChem 2013, 14, 2038.
[10] Nierengarten, J. F.; Schneider, J. P.; Trinh, T. M. N.; Joosten, A.; Holler, M.; Lepage, M. L.; Bodlenner, A.; García-Moreno, M. I.; Mellet, C. O.; Compain, P. Chem.-Eur. J. 2018, 24, 2483.
[11] (a) McClements, D. J. Food Funct. 2018, 9, 22.
(b) Wu, D.; Shen, J.; Bai, H. Z.; Yu, G. C. Chem. Commun. 2018, 54, 2922.
(c) Yeh, H. W.; Lin, T. S.; Wang, H. W.; Cheng, H. W.; Liu, D. Z.; Liang, P. H. Org. Biomol.Chem. 2015, 13, 11518.
[12] (a) Barnard, A.; Smith, D. K. Angew. Chem., Int. Ed. 2012, 51, 6572.
(b) Chen,Y.; Liu, Y. J. Chin. J. Org. Chem. 2012, 32, 805(in Chinese). (陈湧, 刘育, 有机化学, 2012, 32, 805.)
[13] Yamabe, M.; Kaihatsu, K.; Ebara, Y. Bioconjugate Chem. 2018, 29, 1490.
[14] (a) Wang, K. R.; An, H. W.; Wang, Y. Q.; Zhang, J. C.; Li, X. L. Org. Biomol. Chem. 2013, 11, 1007.
(b) Yeung, S. Y.; Sergeeva, Y.; Dam, T.; Jönsson, P.; Pan, G. Q. Chaturvedi, V.; Sellergren, B. Langmuir 2019, 35, 8174.
[15] Qi, Z. H.; Bharate, P.; Lai, C. H.; Ziem, B.; Böttcher, C.; Schulz, A.; Beckert, F.; Hatting, B.; Mülhaupt, R.; Seeberger, P. H.; Haag, R. Nano Lett. 2015, 15, 6051.
[16] Bonduelle, C.; Huang, J.; Mena-Barragán, T.; Mellet, C. O.; Decroocq, C.; Etamé, E.; Heise, A.; Compain, P.; Lecommandoux, S. Chem. Commun. 2014, 50, 3350.
[17] Li, J. J.; Wang, K. R.; Li, R. F.; Yang, J. X.; Li, M.; Zhang, H. X.; Cao, Z. R.; Li, X. L. J. Mater. Chem. B 2019, 7, 1270.
[18] Li, M.; Wang, K. R.; Yang, J. X.; Peng, Y. T.; Liu, Y. X.; Zhang, H. X.; Li, X. L. J. Mater. Chem. B 2019, 7, 1379.
[19] Decroocq, C.; Rodríguez-Lucena, D.; Ikeda, K.; Asano, N.; Compain, P. ChemBioChem 2012, 13, 661.
[20] Ma, C.-L. M.S. Thesis, Hebei University, Baoding, 2016 (in Chinese). (马翠兰, 硕士论文, 河北大学, 保定, 2016.)
[21] Kang, Y.; Ha, W.; Liu, Y. Q.; Ma, Y.; Fan, M. M.; Ding, L. S.; Zhang, S.; Li, B. J. Nanotechnology 2014, 25, 335101.
[22] Roy, S.; Dey, J. Langmuir 2005, 21, 10362.
[23] (a) Trinh, T. M. N.; Holler, M.; Schneider, J. P.; García-Moreno, M. I.; Fernández, J. M. G.; Bodlenner, A.; Compain, P.; Mellet, C. O.; Nierengarten, J. F. J. Mater. Chem. B 2017, 5, 6546.
(b) Lepage, M. L.; Schneider, J. P.; Bodlenner, A.; Meli, A. Riccardis, F. D.; Schmitt, M.; Tarnus, C.; Nguyen-Huynh, N.-T.; Francois, Y. N.; Leize-Wagner, E.; Birck, C.; Cousido-Siah, A.; Podjarny, A.; Izzo, I.; Compain, P. Chem.-Eur. J. 2016, 22, 5151.
[24] Wang, K. R.; Guo, D. S.; Jiang, B. P.; Sun, Z. H.; Liu, Y. J. Phys. Chem. B 2010, 114, 101.
[25] Diot, J.; García-Moreno, M. I.; Gouin, S. G.; Mellet, C. O.; Haupt, H.; Kovensky, J. Org. Biomol. Chem. 2009, 7, 357.
[26] Howar, E.; Cousido-Siah, A.; Lepage, M. L.; Schneider, J. P.; Bodlenner, A.; Mitschler, A.; Meli, A.; Izzo, I.; Alvarez, H. A.; Podjarny, A.; Compain, P. Angew. Chem., Int. Ed. 2018, 57, 8002.
Outlines

/