Progress on the Photocatalytic Organic Hydrogen-Evolution Coupling/Aromatization Reaction

  • Chen Feng ,
  • Chen Hao ,
  • Wu Qing'an ,
  • Luo Shuping
Expand
  • State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014

Received date: 2019-09-16

  Revised date: 2019-10-18

  Online published: 2019-11-01

Supported by

Project supported by the National Natural Science Foundation of China (No. 21376222) and the Natural Science Foundation of Zhejiang Province (No. LY18B060011).

Abstract

The photocatalytic redox reactions have been widely concerned in organic chemistry due to their green, efficiency and safety. In this review, the cross-coupling/aromatization reactions are described based on photocatalytic organic hydrogen-evolution, which can be used to build organic carbon-carbon and carbon-heteroatom bonds by using a photocatalyst/catalyst dual catalytic system. Hydrogen is the only by-product in these reactions. The system and catalytic mechanisms of organic photocatalytic redox reaction are highlighted.

Cite this article

Chen Feng , Chen Hao , Wu Qing'an , Luo Shuping . Progress on the Photocatalytic Organic Hydrogen-Evolution Coupling/Aromatization Reaction[J]. Chinese Journal of Organic Chemistry, 2020 , 40(2) : 339 -350 . DOI: 10.6023/cjoc201909024

References

[1] Shaw, M. H.; Twilton, J.; MacMillan, D. W. J. Org. Chem. 2016, 81, 6898.
[2] Karkas, M. D.; Porco, J. A., Jr.; Stephenson, C. R. Chem. Rev. 2016, 116, 9683.
[3] Shvydkiv, O.; Nolan, K.; Oelgemoller, M. Beilstein J. Org. Chem. 2011, 7, 1055.
[4] Xuan, J.; Xiao, W. -J. Angew. Chem. Int. Ed. 2012, 51, 6828.
[5] Luo, S. -P.; Chen, N.-Y.; Sun, Y.-Y.; Xia, L.-M.; Wu, Z.-C. Junge, H.; Beller, M.; Wu, Q.-A. Dyes Pigm. 2016, 134, 580.
[6] Takeda, H.; Ishitani, O., Coord. Chem. Rev. 2010, 254, 346
[7] Chen J.-X.; Miao, Y.-Y. Nat. Gas Chem. Ind. 2019, 44, 116(in Chinese). (陈嘉欣, 苗媛媛, 天然气化工(C1化学与化工), 2019, 44, 116.)
[8] Xie, J.; Jin, H.; Xu, P.; Zhu, C. Tetrahedron Lett. 2014, 55, 36.
[9] Chen, J.; Cen, J.; Xu, X.; Li, X. Catal. Sci. Technol. 2016, 6, 349.
[10] Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
[11] Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320.
[12] Tamao, K. K. Y.; Sumitani, K. J. Am. Chem. Soc. 1972, 26, 9268.
[13] Hiyama, T.; Sawahata, M.; Obayashi, M. Chem. Informationsdienst 1984, 15.
[14] Zhang, W.; Dai, J.; Xu, H. Chin. J. Org. Chem. 2015, 35, 1820(in Chinese). (张文曼, 戴建军, 许华建, 有机化学, 2015, 35, 1820.)
[15] Cao, S.-S. Chem. Bull. 2019, 82, 684(in Chinese). (曹莎莎, 化学通报, 2019, 82, 684.)
[16] Yuan, D.; Zhang, Q.; Liao, S.; Xiong, W.; Yuan, L.; Cai, Q.; Yang, M.; Li, X.; Jiang, Y.; Liu, Y.; Li, P.; Xu, Z.; Sun, P.; Geng, H. Chin. J. Org. Chem. 2015, 35, 961(in Chinese). (袁定重, 张庆华, 廖世军, 熊文文, 元利刚, 蔡奇胜, 杨梦梅, 李雄, 蒋烨佳, 刘妍, 李萍, 徐贞帅, 孙盼盼, 耿会玲, 有机化学, 2015, 35, 961.)
[17] Girard, S. A.; Knauber, T.; Li, C. J. Angew. Chem., Int. Ed. 2014, 53, 74.
[18] Tang, S.; Zeng, L.; Lei, A.-W. J. Am. Chem. Soc. 2018, 140, 13128.
[19] Chen, B.; Wu, L.-Z.; Tung, C.-H. Acc. Chem. Res. 2018, 51, 2512.
[20] Zhong, J.-J.; Meng, Q.-Y.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Acta Chim. Sinica 2017, 75, 34(in Chinese). (钟建基, 孟庆元, 陈彬, 佟振合, 吴骊珠, 化学学报, 2017, 75, 34.)
[21] Meng, Q.-Y.; Zhong, J.-J.; Liu, Q.; Gao, X.-W.; Zhang, H.-H.; Lei, T.; Li, Z.-J.; Feng, K.; Chen, B.; Tung, C.-H.; Wu, L.-Z. J. Am. Chem. Soc. 2013, 135, 19052.
[22] Zhang, P., Ph.D. Dissertation, Dalian University of Technology, Dalian, 2011(in Chinese). (张盼, 博士论文, 大连理工大学, 大连, 2011.)
[23] Schrauzer, G. N. Acc. Chem. Res. 1968, 1, 97.
[24] Connolly, P.; Espenson, J. H. Inorg. Chem. 1986, 25, 2684.
[25] Pantani, O.; Naskar, S.; Guillot, R.; Millet, P.; Anxolabéhère-Mallart, E.; Aukauloo, A. Angew. Chem., Int. Ed. 2008, 47, 9948.
[26] Razavet, M.; Artero, V.; Fontecave, M. Inorg. Chem. 2005, 44, 4786.
[27] Baffert, C.; Artero, V.; Fontecave, M., Inorg. Chem. 2007, 46, 1817.
[28] Hu, X.; Brunschwig, B. S.; Peters, J. C. J. Am. Chem. Soc. 2007, 129, 8988.
[29] Zhong, J.-J.; Meng, Q. Y.; Liu, B.; Li, X.-B.; Gao, X.-W.; Lei, T.; Wu, C.-J.; Li, Z.-J.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2014, 16, 1988.
[30] Zhong, J. J.; Wu, C.-J.; Meng, Q. Y.; Gao, X.-W.; Lei, T.; Tung, C. H.; Wu, L.-Z. Adv. Synth. Catal. 2014, 356, 2846.
[31] Gao, X. W.; Meng, Q.-Y.; Li, J.-X.; Zhong, J.-J.; Lei, T.; Li, X.-B.; Tung, C.-H.; Wu, L.-Z. ACS Catal. 2015, 5, 2391.
[32] Liu, C.; Zhang, H.; Shi, W.; Lei, A.-W. Chem. Rev. 2011, 111, 1780.
[33] Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293.
[34] Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
[35] Zhang, S.-Y.; Zhang, F.-M.; Tu, Y.-Q. Chem. Soc. Rev. 2011, 40, 1937.
[36] Li, Z.; Yu, R.; Li, H. Angew. Chem., Int. Ed. 2008, 120, 7607.
[37] Liu, D.; Liu, C.; Li, H.; Lei, A.-W. Chem. Commun. 2014, 50, 3623.
[38] Xiang, M.; Meng, Q.-Y.; Li, J.-X.; Zheng, Y.-W.; Ye, C.; Li, Z.-J.; Chen, B.; Tung, C. H.; Wu, L.-Z. Chemistry 2015, 21, 18080
[39] Rezaei, Z.; Firouzabadi, H.; Iranpoor, N.; Ghaderi, A.; Jafari, M. R.; Jafari, A. A.; Zare, H. R. Eur. J. Med. Chem. 2009, 44, 4266.
[40] Turski, L.; Schneider, H. H.; Neuhaus, R. Restor. Neurol. Neurosci. 2000, 17, 45.
[41] Niu, L.; Wang, S.; Liu, J.; Yi, H.; Liang, X.-A.; Liu, T.; Lei, A.-W. Chem. Commun. 2018, 54, 1659.
[42] Hu, X.; Zhang, G.-D.; Bu, F.-X.; Luo, X.; Yi, K.-B.; Zhang, H.; Lei, A.-W. Chem. Sci. 2018, 9, 1521.
[43] Hu, X.; Zhang, G.; Bu, F.; Lei, A. Angew. Chem., Int. Ed. 2018, 57, 1286.
[44] Zhang, G.; Lin, Y.; Luo, X.; Hu, X.; Chen, C.; Lei, A.-W. Nat. Commun. 2018, 9, 1225.
[45] Schlogl, R. Angew. Chem., Int. Ed. 2003, 42, 2004.
[46] Karam, A. R.; Catarí, E. L.; López-Linares, F.; Agrifoglio, G.; Albano, C. L.; Díaz-Barrios, A.; Lehmann, T. E. Appl. Catal. 2005, 280, 165.
[47] Zheng, Y.-W.; Chen, B.; Ye, P.; Feng, K.; Wang, W.; Meng, Q.-Y.; Wu, L.-Z.; Tung, C.-H. J. Am. Chem. Soc. 2016, 138, 10080.
[48] Vicentini, C. B.; Romagnoli, C.; Andreotti, E. Agric. Food Chem. 2007, 55, 10331.
[49] Niu, L.; Yi, H.; Wang, S.; Liu, T.; Liu, J.; Lei, A.-W. Nat. Commun. 2017, 8, 14226.
[50] Marson, C. M. Chem. Soc. Rev. 2011, 40, 5514.
[51] Baviskar, A. T.; Amrutkar, S. M.; Trivedi, N.; Chaudhary, V.; Nayak, A.; Guchhait, S. K.; Banerjee, U. C.; Bharatam, P. V.; Kundu, C. N. ACS Med. Chem. Lett. 2015, 6, 481.
[52] Chen, H.; Yi, H.; Tang, Z.; Bian, C.; Zhang, H.; Lei, A.-W. Adv. Synth. Catal. 2018, 360, 3220.
[53] Niu, L.; Liu, J.; Yi, H.; Wang, S.; Liang, X.-A.; Singh, A. K.; Chiang, C.-W.; Lei, A.-W. ACS Catal. 2017, 7, 7412.
[54] Janicki, S. Z.; Schuster, G. B. J. Am. Chem. Soc. 1995, 117, 8524.
[55] Somei, M.; Yamada, F. J. Nat. Prod. 2004, 21, 278.
[56] Somei, M.; Yamada, F. J. Nat. Prod. 2005, 22, 73.
[57] Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem. Rev. 2010, 110, 4489.
[58] Wu, C.-J.; Meng, Q.-Y.; Lei, T.; Zhong, J.-J.; Liu, W.-Q.; Zhao, L.-M.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. ACS Catal. 2016, 6, 4635.
[59] Petersen, A. R.; Taylor, R. A.; Vicente-Hernandez, I.; Mallender, P. R.; Olley, H.; White, A. J.; Britovsek, G. J. J. Am. Chem. Soc. 2014, 136, 14089.
[60] Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
[61] Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A.-W. Chem. Rev. 2015, 115, 12138.
[62] Zhang, M.-L.; Ruzi, R.; Li, N.; Xie, J.; Zhu, C. Org. Chem. Front. 2018, 5, 749.
[63] Sun, Q, W. R.; Cai, S. J. Med. Chem. 2011, 54, 1126.
[64] Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J.-X.; Wu, L.-Z.; Lei, A.-W. J. Am. Chem. Soc. 2015, 137, 9273.
[65] Welsch, M. E.;, Snyder, S. A., Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.
[66] Zhao, Q.-Q.; Hu, X.-Q.; Yang, M.-N.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2016, 52, 12749.
[67] Tian, W.-F.; Wang, D.-P.; Wang, S.-F.; He, K.-H.; Cao, X.-P.; Li, Y. Org. Lett. 2018, 20, 1421.
[68] Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681.
[69] Voica, A. F.; Mendoza, A.; Gutekunst, W. R.; Fraga, J. O.; Baran, P. S. Nat. Chem. 2012, 4, 629.
[70] Janowicz, A. H.; Bergman, R. G. J. Am. Chem. Soc. 1982, 104, 352.
[71] Hoyano, J. K.; Graham, W. A. G. J. Am. Chem. Soc. 1982, 104, 3723.
[72] Buist, P. H. Nat. Prod. Rep. 2004, 21, 249.
[73] Breslow, R.; Baldwin, S.; Flechtner, T.; Kalicky, P.; Liu, S.; Washburn, W. J. Am. Chem. Soc. 1973, 95, 3251.
[74] Bigi, M. A.; Reed, S. A.; White, M. C. Nat. Chem. 2011, 3, 216.
[75] West, J. G.; Huang, D.; Sorensen, E. J. Nat. Commun. 2015, 6, 10093.
[76] He, K.-H.; Tan, F.-F.; Zhou, C.-Z.; Zhou, G.-J.; Yang, X.-L.; Li, Y. Angew. Chem., Int. Ed. 2017, 56, 3080.
[77] Sahoo, M. K.; Balaraman, E. Green Chem. 2019, 21, 2119.
[78] Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M. J. Am. Chem. Soc. 2017, 139, 2204.
[79] Fuse, H.; Kojima, M.; Mitsunuma, H.; Kanai, M. Org. Lett. 2018, 20, 2042.
Outlines

/