Synthesis of Resveratrol, Piceatannol and Pinosylvin

  • Zhang Jingjing ,
  • Yao Ming ,
  • Li Li ,
  • Sang Dayong ,
  • Xiong Hangxing ,
  • Liu Shengpeng
Expand
  • a School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205;
    b College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen 448000

Received date: 2019-08-09

  Revised date: 2019-10-08

  Online published: 2019-11-07

Supported by

Project supported by the Science Technology Foundation for Creative Research Group of Hubei Department of Education (No. T201719).

Abstract

A convenient method for the practical synthesis of resveratrol, piceatannol and pinosylvin is described. Resveratrol, pinosylvin and piceatannol can be achieved through a simultaneous demethylation and isomerization process from stilbenes with the aid of aluminum and iodine. The overall yields of the reaction were 68%, 78% and 56% (based on aromatic aldehyde). The solvent of the reaction can be reused after filtered. At the same time, quantum chemical calculations and control experiments show that iodine radical may be the key factor leading to cis-trans isomerization of double bond in the process of demethylation.

Cite this article

Zhang Jingjing , Yao Ming , Li Li , Sang Dayong , Xiong Hangxing , Liu Shengpeng . Synthesis of Resveratrol, Piceatannol and Pinosylvin[J]. Chinese Journal of Organic Chemistry, 2020 , 40(4) : 1062 -1067 . DOI: 10.6023/cjoc201908014

References

[1] (a) Filippis, B. D.; Ammazzalorso, A.; Amoroso, R.; Giampietro, L. Drug Dev. Res. 2019, 80, 285.
(b) Keylor, M. H.; Matsuura, B. S.; Stephenson, C. R. Chem. Rev. 2015, 115, 8976.
(c) Si, J.-Y. Nat. Prod. Res. Dev. 1994, 6, 71(in Chinese). (斯建勇, 天然产物研究与开发, 1994, 6, 71.)
[2] Chen, G. H.; Webster, J. M.; Li, J. X.; Hu, K. J.; Zhu, J. WO 042231, 2001[Chem. Abstr. 2001, 135, 45986.]
[3] (a) Quideau, S.; Deffieux, D.; Pouysegu, L. Angew. Chem., Int. Ed. 2012, 51, 6824.
(b) Gao, H.; Zheng, X.; Qi, Y.; Wang S.; Wan C.; Rao, G.; Mao, Z. Chin. J. Org. Chem. 2018, 38, 648(in Chinese). (高慧, 郑喜, 祁燕, 王斯, 万春平, 饶高雄, 毛泽伟, 有机化学, 2018, 38, 648.)
[4] (a) Becker, K. B. Synthesis 1983, 341.
(b) Zhao, S.; Yu, Y.; Zhang, Y. Chin. J. Org. Chem. 2013, 33, 1851.
(c) Khan, Z. A.; Iqbal, A.; Shahzad, S. A. Mol. Diversity 2017, 21, 483.
[5] (a) Li, Q.; Shah, Z.; Qu, J. Kang, Y. J. Org. Chem. 2018, 83, 296.
(b) Srivastava, V. Catal. Lett. 2017, 147, 693.
(c) Zou, Y.; Huang, Q.; Huang, T.; Ni, Q.; Zhang, E.; Xu, T.; Yuan, M.; Li, J. Org. Biomol. Chem. 2013, 11, 6867.
(d) Gray, E. E.; Rabenold, L. E.; Goess, B. C. Tetrahedron Lett. 2011, 52, 6177.
(e) Sun, H.-Y.; Xiao, C.-F.; Cai, Y.-C.; Chen, Y.; Wei, W.; Liu, X.-K.; Lv, Z.-L.; Zou, Y. Chem. Pharm. Bull. 2010, 58, 1492.
(f) Alonso, F.; Riente, P.; Yus, M. Eur. J. Org. Chem. 2009, 34, 6034.
(g) Dong, D. J.; Li, H. H.; Tian, S. K. J. Am. Chem. Soc. 2010, 132, 5018.
(h) Alonso, F.; Riente, P.; Yus, M. Tetrahedron Lett. 2009, 50, 3070.
(i) McNulty, J.; Das, P. Eur. J. Org. Chem. 2009, 24, 4031.
(j) Roberti, M.; Pizzirani, D.; Simoni, D.; Rondanin, R.; Baruchello, R.; Bonora, C.; Buscemi, F.; Grimaudo, S.; Tolomeo, M. J. Med. Chem. 2003, 46, 3546.
(k) Ali, M. A.; Kondo, K.; Tsuda, Y. Chem. Pharm. Bull. 1992, 40, 1130.
[6] (a) Tian, J.; Yue, H.; Yang, P.; Sang, D. ChemistrySelect 2019, 4, 38.
(b) Sang, D.; Tian, J.; Tu, X.; He, Z.; Yao, M. Synthesis 2019, 51, 704.
(c) Sang, D.; Tu, X.; Tian, J.; He, Z.; Yao, M. ChemistrySelect 2018, 3, 10103.
(d) Sang, D.; Yao, M.; Tian, J.; Chen, X.; Zhan, H.; You, L. Synlett 2017, 28, 138.
[7] (a) Li, G.; Zou, Y.; Zhang, X. J. Chem. Res. 2007, 657.
(b) Sun, H.; Xiao, C.; Wei, W.; Chen, Y.; Lu, Z.; Zou, Y. Chin. J. Org. Chem. 2010, 30, 1574(in Chinese). (孙洪宜, 肖春芬, 魏文, 陈煜, 吕泽良, 邹永, 有机化学, 2010, 30, 1574.)
[8] (a) van Rossum, A. J. G.; de Bruin, A. H. M.; Nivard, R. J. F. J. Chem. Soc., Perkin Trans. 2 1975, 1036.
(b) Giacomelli, G.; Lardicci, L.; Saba, A. J. Chem. Soc., Perkin Trans. 1 1978, 314.
(c) Ali, M. A.; Tsuda, Y. Chem. Pharm. Bull. 1992, 40, 2842.
(d) Gaukroger, K.; Hadfield, J. A.; Hepworth, L. A.; Lawrence, N. J.; McGown, A. T. J. Org. Chem. 2001, 66, 8135.
(e) Hepprele, S. S.; Li, Q.; East, A. L. L. J. Phys. Chem. A 2005, 109, 10975.
(f) Deshpande, P. B.; Kumar, S.; Palanisamy, U.; Andrew, G. US 6844471, 2005.
(g) Li, Q.; Shah, Z.; Qu, J.; Kang, Y. J. Org. Chem. 2018, 83, 296.
(h) Settle, A. E.; Berstis, L.; Zhang, S.; Rorrer, N. A.; Hu, H.; Richards, R. M.; Beckham, G. T.; Crowley, M. F.; Vardon, D. R. ChemSusChem 2018, 11, 1768.
[9] (a) Das, M.; O'Shea, D. F. Org. Lett. 2016, 18, 336.
(b) Simoni, D.; Roberti, M.; Invidiata, F. P.; Aiello, E.; Aiello, S.; Marchetti, P.; Baruchello, R.; Eleopra, M.; Cristina, A. D.; Grimaudo, S.; Gebbia, N.; Crosta, L.; Dieli, F.; Tolomeo, M. Bioorg. Med. Chem. Lett. 2016, 16, 3245.
(c) Zaki, M. A.; Balachandran, P.; Khan, S.; Wang, M.; Mohammed, R.; Hetta, M. H.; Pasco, D. S.; Muhammad, I. J. Nat. Prod. 2013, 76, 679.
(d) Antonioletti, R.; Bonadies, F.; Ciammaichella, A.; Viglianti, A. Tetrahedron 2008, 64, 4644.
[10] (a) Sun, H.-Y.; Xiao, C.-F.; Cai, Y.-C.; Chen, Y.; Wei, W.; Liu, X.-K.; Lv, Z.-L.; Zou, Y. Chem. Pharm. Bull. 2010, 58, 1492.
(b) Jayatilake, G. S.; Jayasuriya, H.; Lee, E. S.; Koonchanok, N. M.; Geahlen, R. L.; Ashendel, C. L.; McLaughlin, J. L.; Chang, C. J. J. Nat. Prod. 1993, 56, 1805.
(c) Uzura, S.; Sekine-Suzuki, E.; Nakanishi, I.; Sonoda, M.; Tanimori, S. Bioorg. Med. Chem. Lett. 2016, 26, 3886.
Outlines

/