Zn/Y Bimetallic Relay Catalysis: One Pot Intramolecular Cyclo-isomerization/Intermolecular Alder-Ene Reaction toward Oxazole α-Hydroxy Amide Derivatives

  • Zhang Shuo ,
  • Lou Jianfang ,
  • Wang Jiarui ,
  • Song Zihe ,
  • Peng Dan ,
  • Wang Feng ,
  • Yan Zhiwang ,
  • Cui Shiqi ,
  • Liu Yifan ,
  • Mu Qiuhong ,
  • Li Jinhui
Expand
  • a Shandong Provincial Key Laboratory for Special Silicone-Containing Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014;
    b School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353;
    c College of Food Science and Engineering, Shandong Agricultural University, Taian 271018

Received date: 2019-09-02

  Revised date: 2019-10-23

  Online published: 2019-11-07

Supported by

Project supported by the Shandong Provincial Natural Science Foundation (No. ZR2017BB033), the Youth Science Funds of Shandong Academy of Sciences (No. 2018QN0030) and the National Natural Science Foundation of China (No. 51503118).

Abstract

A novel tandem metal relay catalytic system of Zn/Y has been successfully developed. By using this unprecedented Zn(OTf)2/Y(OTf)3 bimetallic relay catalytic system, a variety of oxazole α-hydroxy amides derivatives were obtained from easily available N-(propargyl)-arylamides and various 1-benzylindoline-2,3-dione derivatives through intramolecular cycloisomerization/intermolecular Alder-ene reaction under mild conditions. The first step of the one-pot procedure is that Zn(OTf)2 acts as a π acid to activate the triple bond of N-(propargyl)-arylamides, and a subsequent intramolecular 5-exo-dig cyclization forms the oxazoline intermediate. Separately, Y(OTf)3 acts as Lewis acid, then oxazoline intermediate and 1-benzylindoline-2,3-dione derivatives are transformed to the oxazole α-hydroxy amide derivatives in good to excellent yields in an intermolecular Alder-ene reaction. Control experiments in the optimization section disclose the fact that Zn(OTf)2 and Y(OTf)3 are both indispensable for this intramolecular cycloisomerization/intermolecular Alder-ene reaction. Generally, the synthetic reactions run under air atmosphere by heating all the substrates and reagents in one-pot at 100℃. The present method benefits from the distinctive features of simple reaction conditions, high atom economy and broad substrate tolerance. It is of great significance for the synthesis of oxazole derivatives.

Cite this article

Zhang Shuo , Lou Jianfang , Wang Jiarui , Song Zihe , Peng Dan , Wang Feng , Yan Zhiwang , Cui Shiqi , Liu Yifan , Mu Qiuhong , Li Jinhui . Zn/Y Bimetallic Relay Catalysis: One Pot Intramolecular Cyclo-isomerization/Intermolecular Alder-Ene Reaction toward Oxazole α-Hydroxy Amide Derivatives[J]. Chinese Journal of Organic Chemistry, 2020 , 40(3) : 704 -713 . DOI: 10.6023/cjoc201909002

References

[1] (a) Wipf, P.; Venkatraman, S. J. Org. Chem. 1996, 61, 6517.
(b) David, N.; Pasceri, R.; Kitson, R. R. A.; Pradal, A.; Moody, C. Chem.-Eur. J. 2016, 22, 10867.
(c) Turchi, I. J.; Dewar, M. J. S. Chem. Rev. 1975, 75, 389.
(d) Meyers, A. I.; Mihelich, E. D. Angew. Chem., Int. Ed. 1976, 15, 270.
(e) Desimoni, G.; Quadrelli, G. F. P. Chem. Rev. 2003, 103, 3119.
(f) Onishi, H. R.; Pelak, B. A.; Gerckens, L. S.; Silver, L. L.; Kahan, F. M.; Chen, M.-H.; Patchett, A. A.; Galloway, S. M.; Hyland, S. A.; Anderson, M. S.; Raetz, C. R. H. Science 1996, 274, 980.
(g) Bergeron, R. J.; Xin, M. G.; Weimar, W. R.; Smith, R. E.; Wiegand, J. J. Med. Chem. 2001, 44, 2469.
(h) Genet, J. P.; Thorimbert, S.; Touzin, A. M. Tetrahedron Lett. 1993, 34, 1159.
(i) Zhou, Q.; Zheng, D. D.; Shi, Y. J.; Yao, W.; Qian, H. W.; Ding, Y.; Wei, Z. H.; Shen, A. B.; Feng, X.; Shi, J.; Dai, H. Chin. J. Org. Chem. 2018, 38, 3318(in Chinese). (周钱, 郑丹丹, 石玉军, 姚炜, 钱宏炜, 丁颖, 魏中昊, 沈爱宝, 冯霞, 石健, 戴红, 有机化学, 2018, 38, 3318.)
(j) Zhou, J. H.; Dai, H.; Qian, H. W.; Du, X. C.; Mao, X. Y.; Shi, Y. J.; Feng, H.; Shi, J.; Yao, Y. Chin. J. Org. Chem. 2018, 38, 2122(in Chinese). (周家华, 戴红, 钱宏炜, 杜显超, 茅心宇, 石玉军, 冯浩, 石健, 姚勇, 有机化学, 2018, 38, 2122.)
(k) Dai, H.; Ding, Y.; Du, X. C.; Yao, W.; Chen, Q. W.; Wang, X. L.; Zhong, S. L.; Cao, X. F.; Shi, Y. J. Chin. J. Org. Chem. 2018, 38, 1755(in Chinese). (戴红, 丁颖, 杜显超, 姚炜, 陈庆文, 王祥龙, 仲苏林, 曹雄飞, 石玉军, 有机化学, 2018, 38, 1755.)
(l) Shi, Y. J.; Du, X. C.; Wang, X. L.; Chen, Q. W.; Li, L.; Dai, H.; Xu, C. Q.; Zhang, J. Y.; Ling, Y. Chin. J. Org. Chem. 2018, 38, 1772(in Chinese). (石玉军, 杜显超, 王祥龙, 陈庆文, 李玲, 戴红, 徐蔡芹, 张敬远, 凌勇, 有机化学, 2018, 38, 1772.)
[2] (a) Haidukewych, D.; Meyers, A. I. Tetrahedron Lett. 1972, 13, 3031.
(b) Meyers, A. I.; Temple, D. L. J. Am. Chem. Soc. 1970, 92, 6644.
(c) Nelson, T. D.; Meyers, A. I. J. Org. Chem. 1994, 59, 2577.
[3] Lahm, G.; Opatz, T. Org. Lett. 2014, 16, 4201.
(b) Wang, H. L.; Shang, M.; Sun, S. Z.; Zhou, Z. L.; Laforteza, N.; Dai, H. X.; Yu, J. Q. Org. Lett. 2015, 17, 1228.
(c) Ling, P. X.; Fang, S. L.; Yin, X. S.; Chen, K.; Sun, B. Z.; Shi, B. F. Chem.-Eur. J. 2015, 21, 17503;
[4] (a) Desimoni, G.; Faita, G.; Jorgensen, K. A. Chem. Rev. 2006, 106, 3561.
(b) McManus, H. A.; Guiry, P. J. Chem. Rev. 2004, 104, 4151.
(c) Hargaden, G. C.; Guiry, P. J. Chem. Rev. 2009, 109, 2505.
(d) Gade, L. H.; Bellemin-Laponnaz, S. Coord. Chem. Rev. 2007, 251, 718.
[5] (a) Peng, H.; Akhmedov, N. G.; Liang, Y. F.; Jiao, N.; Shi, X. J. Am. Chem. Soc. 2015, 137, 8912.
(b) Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Org. Lett. 2004, 6, 4391.
(c) Doherty, S.; Knight, J. G.; Hashmi, A. S. K.; Smyth, C. H.; Ward, N. A. B.; Robson, K. J.; Tweedley, S.; Harrington R. W.; Clegg, W. Organometallics 2010, 29, 4139.
(d) Hashmi, A. S. K.; Schuster, A. M.; Rominger, F. J. Org. Chem. 2012, 77, 6394.
(e) Hashmi, A. S. K.; Schuster, A. M.; Schmuck, M.; Rominger, F. Eur. J. Org. Chem. 2011, 2011, 4595.
[6] (a) Saito, A.; Iimura, K.; Hanzawa, Y. Tetrahedron Lett. 2010, 51, 1471.
(b) Beccalli, E. M.; Borsini, E.; Broggini, G.; Palmisano, G.; Sottocornola, S. J. Org. Chem. 2008, 73, 4746.
(c) Arcadi, A.; Cacchi, S.; Cascia, L.; Fabrizi, G.; Marinelli, F. Org. Lett., 2001, 3, 2501
[7] (a) Jin, C.; Burgess, J. P.; Kepler, J. A.; Cook, C. E. Org. Lett. 2007, 9, 1887.
(b) Alhalib, A.; Moran, W. J. Org. Biomol. Chem., 2014, 12, 795.
(c) Zhang, S.; Chen, Y.; Wang, J.; Pan, Y.; Xu, Z.; Tung, C.-H. Org. Chem. Front. 2015, 2, 578
[8] (a) Harmata, M.; Huang, C. Synlett 2008, 1399.
(b) Wong, V. H. L.; White, A. J. P.; Hor, T. S.; Hii, K. K. Adv. Synth. Catal. 2015, 357, 3943.
(c) Hu, Y.; Yi, R.; Wu, F.; Wan, B. J. Org. Chem. 2013, 78, 7714.
[9] (a) Gao, X. H.; Qian, P. C.; Zhang, X. G.; Deng, C. L. Synlett, 2016, 27, 1110;
[10] (a) Wang, B.; Chen, Y.; Zhou, L.; Wang, J.; Tung, C.-H.; Xu, Z. J. Org. Chem. 2015, 80, 12718.
(b) Wang, B.; Chen, Y.; Zhou, L.; Wang, J.; Xu, Z. Org. Biomol. Chem. 2016, 14, 826.
[11] (a) Mikami, K.; Shimizu, M. Chem. Rev. 1992, 92, 1021.
(b) Maruoka, K.; Hoshino, Y.; Shirasaka, T.; Yamamoto, H. Tetrahedron Lett. 1988, 29, 3967.
(c) Whitesell, J. K.; Bhattacharya, A.; Buchanan, C. M.; Chen, H. H.; Deyo, D.; James, D.; Liu, C. L.; Minto, M. A. Tetrahedron 1986, 42, 2993.
(d) Okachi, T.; Onaka, M. J. Am. Chem. Soc. 2004, 126, 2306.
(e) Hutson, G. E.; Dave, A. H.; Rawal, V. H. Org. Lett. 2007, 9, 3869.
[12] Mikami, K. Pure Appl. Chem. 1996, 68, 639;
[13] Zheng, K.; Shi, J.; Liu, X.; Feng, X. J. Am. Chem. Soc. 2008, 130, 15770.
[14] Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc. 1990, 112, 3949.
[15] Evans, D. A.; Burgey, C. S.; Paras, N. A.; Vojkovsky, T.; Tregay, S. W. J. Am. Chem. Soc. 1998, 120, 5824.
[16] (a) Trost, B. M.; Lee, D. C.; Rise, F. Tetrahedron Lett. 1989, 30, 651.
(b) Trost, B. M.; Czeskis, B. A. Tetrahedron Lett. 1994, 35, 211.
[17] (a) Zhang, S.; Wei, F.; Song, C. L.; Jia, J.; Xu, Z. H. Chin. J. Chem. 2014, 32, 937.
(b) Liang, M.; Zhang, S.; Jia, J.; Tung, C-H.; Wang, J. W.; Xu, Z. H. Org. Lett. 2017, 19, 2526.
(c) Zhang, S.; Xu, Z. L.; Jia, J.; Tung, C-H.; Xu, Z. H. Chem. Commun. 2014, 50, 12084.
(d) Wang, X. H.; Dong, S. L.; Yao, Z. L.; Feng, L.; Daka, P.; Wang, H.; Xu, Z. H. Org. Lett. 2014, 16, 22.
(e) Thirupathi, N.; Wei, F.; Tung, C.-H., Xu, Z. Nat. Commun. 2019, 10, 3158.
(f) Kong, L.; Thirupathi, N.; Jia, J., Xu, Z. Sci. China Chem. 2019, 62, 80.
(f) Gupta, G. R.; Shah, J.; Vadagaonkar, K. S.; Lavekar, A. G.; Kapdi, A. R. Org. Biomol. Chem. 2019, 17, 7596.
(g) Liang, Q. J.; Xu, Y. H.; Loh, T. P. Org. Chem. Front. 2018, 5, 2765.
Outlines

/