Transition Metal-Catalyzed Asymmetric Addition of Organoboron Reagents to Aldehydes and Ketones

  • Zhu Dong-Xing ,
  • Xu Ming-Hua
Expand
  • a State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203;
    b Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055

Received date: 2019-10-10

  Revised date: 2019-10-27

  Online published: 2019-11-07

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21672229, 81521005, 21971103) and the National Science & Technology Major Project of China (No. 2018ZX09711002-006).

Abstract

Chiral aryl alcohols are prevalent in a broad range of biologically active compounds, pharmaceutical agents and natural products. They also constitute a broad class of optically active building blocks for the synthesis of important chiral compounds. In recent years, organoboron reagents are widely used in organic synthesis as they possess advantages of ready availability, low toxicity, good air and moisture stability as well as high functional group compatibility. Since the first report of rhodium-catalyzed asymmetric addition of aryl boronic acids to aryl aldehydes in 1998 by Miyaura, the use of organoboron reagents in asymmetric addition to various carbonyl compounds under various transition-metal catalyses has been intensively investigated. Over the past two decades, transition metal-catalyzed asymmetric addition of organoboron reagents to aldehydes and ketones has proved as one of the most direct and powerful methods for accessing versatile optically active alcohols. The development and progress of a wide range of chiral ligands for Rh, Ru, Pd, Ir, Cu, Ni and Co catalysis for asymmetric addition of organoboron reagents to aldehydes and ketones are summarized, and the achievements in enantioselective synthesis of chiral aryl alcohols and their applications in the synthesis of related biocative products are described. Among them, rhodium and ruthenium-catalyzed enantioselective additions have received considerable attention. In the cases of activated carbonyl compounds such as α-aryl ketoesters and α-diaryl diketones, excellent results can be attained in terms of both yield and enantioselectivity. However, it remains a daunting challenge for highly enantioselective addition to simple unactivated aldehydes and ketones owing to the difficulty in overcoming stereo differentiation. Future efforts in the community would focus on developing new effective transition-metal catalysts in addressing these issues by promoting efficient transformation and controlling excellent enantioselectivity.

Cite this article

Zhu Dong-Xing , Xu Ming-Hua . Transition Metal-Catalyzed Asymmetric Addition of Organoboron Reagents to Aldehydes and Ketones[J]. Chinese Journal of Organic Chemistry, 2020 , 40(2) : 255 -275 . DOI: 10.6023/cjoc201910009

References

[1] (a) Dhillon, S.; Scott, L. J.; Plosker, G. L. CNS Drugs 2006, 20, 763.
(b) Fournier, A. M.; Brown, R. A.; Farnaby, W.; Miyatake-On-dozabal, H.; Clayden, J. Org. Lett. 2010, 12, 2222.
(c) Nathan, L. A. J. Appl. Ther. 1962, 4, 830.
[2] Bai, D. L.; Chen, K. X.; Li, S. K.; Feng, S. Adv. Med. Chem. 2011, p. 290(in Chinese). (白东鲁, 陈凯先, 李树坤, 冯松, 高等药物化学, 2011, p. 290.)
[3] (a) Heravi, M. M.; Zadsirjan, V.; Esfandyari, M.; Lashaki, T. B. Tetrahedron:Asymmetry 2017, 28, 987.
(b) Zaitsev, A. B.; Adolfsson, H. Synthesis 2006, 1725.
(c) Scott, H. K.; Aggarwal, V. K. Chem. Eur. J. 2011, 17, 13124.
(d) Jacobsen, E. N.; Kakiuchi, F.; Konsler, R. G.; Larrow, J. F.; Tokunaga, F. Tetrahedron Lett. 1997, 38, 773.
(e) Wang, C.; Luo, L.; Yamamoto, H. Acc. Chem. Res. 2016, 49, 193.
(f) Sälinger, D.; Brückner, R. Chem.-Eur. J. 2009, 15, 6688.
[4] (a) Hatano, M.; Ishihara, K. Synthesis 2008, 1647.
(b) Rong, J.; Pellegrini, T.; Harutyunyan, S. R. Chem. Eur. J. 2016, 22, 3558.
(c) Collados, J. F.; Sol, R.; Harutyunyan, S. R.; Macià, B. ACS Catal. 2016, 6, 1952.
(d) Pellissier, H. Tetrahedron 2015, 71, 2487.
(e) Liu, Y. L.; Lin, X. T. Adv. Synth. Catal. 2019, 361, 876.
[5] Sakai, M.; Ueda, M.; Miyaura, N. Angew. Chem., Int. Ed. 1998, 37, 3279.
[6] (a) Jiang, Z. T.; Wang, B. Q.; Shi, Z. J. Chin. J. Chem. 2018, 36, 954.
(b) Wang, G. N.; Gan, Y.; Liu, Y. H. Chin. J. Chem. 2018, 36, 916.
[7] Focken, T.; Rudolph, J.; Bolm, C. Synthesis 2005, 429.
[8] (a) Suzuki, K.; Ishii, S.; Kondo, K.; Aoyama, T. Synlett 2006, 648.
(b) Suzuki, K.; Kondo, K.; Aoyama, T. Synthesis 2006, 1360.
(c) Arao, T.; Suzuki, K.; Kondo, K.; Aoyama, T. Synthesis 2006, 3809.
[9] Duan, H. F.; Xie, J. H.; Shi, W. J.; Zhang, Q.; Zhou, Q. L. Org. Lett. 2006, 8, 1479.
[10] Jagt, R. B. C.; Toullec, P. Y.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Org. Biomol. Chem. 2006, 4, 773.
[11] (a) Noël, T.; Vandyck, K.; Van der Eycken, J. Tetrahedron 2007, 63, 12961.
(b) Nishimura, T.; Kumamoto, H.; Nagaosa, M.; Hayashi, T. Chem. Commun. 2009, 45, 5713.
[12] Morikawa, S.; Michigami, K.; Amii, H. Org. Lett. 2010, 12, 2520.
[13] (a) Ma, Q. S.; Ma, Y. D.; Liu, X.; Duan, W. Z.; Qu, B.; Song, C. Tetrahedron:Asymmetry 2010, 21, 292.
(b) Duan, W. Z.; Ma, Y. D.; Qu, B.; Zhao, L.; Chen, J. Q.; Song, C. Tetrahedron:Asymmetry 2012, 23, 1369.
(c) Duan, W. Z.; Ma, Y. D.; He, F. Y.; Zhao, L.; Chen, J. Q.; Song, C. Tetrahedron:Asymmetry 2013, 24, 241.
(d) Wang, D. X.; Ma, Y. D.; He, F. Y.; Duan, W. Z.; Zhao, L.; Song, C. Synth. Commun. 2013, 43, 810.
(e) Chen, J. Q.; Yang, S. B.; Chen, Z.; Song, C.; Ma, Y. D. Tetrahedron:Asymmetry 2015, 26, 288.
[14] He, W. P.; Zhou, B. H.; Zhou, Y. L.; Li, X. L.; Fan, L. M.; Shou, H. W.; Li, J. Tetrahedron Lett. 2016, 57, 3152.
[15] Kamikawa, K.; Tseng, Y.-Y.; Jian, J.-H.; Takahashi, T.; Ogasawara, M. J. Am. Chem. Soc. 2017, 139, 1545.
[16] (a) Yamamoto, Y.; Miyaura, N.; Kurihara, K. Angew. Chem., Int. Ed. 2009, 48, 4414.
(b) Shirai, T.; Watanabe, M.; Kurihara, K.; Miyaura, N.; Yamamoto, Y. Molecules 2011, 16, 5020.
(c) Yamamoto, Y.; Shirai, T.; Miyaura, N. Chem. Commun. 2012, 48, 2803.
[17] Desroches, J.; Ariane Tremblay, A.; Paquin, J.-F. Org. Biomol. Chem. 2016, 14, 8764.
[18] Li, K.; Hu, N. F.; Luo, R. S.; Yuan, W. C.; Tang, W. J. J. Org. Chem. 2013, 78, 6350.
[19] Lu, Z. W.; Zhang, H. Y.; Yang, Z. P.; Ding, N.; Meng, L.; Wang. J. ACS Catal. 2019, 9, 1457.
[20] (a) Arao, T.; Kondo, K.; Aoyama, T. Tetrahedron Lett. 2007, 48, 4115.
(b) Yamamoto, K.; Tsurumi, K.; Sakurai, F.; Kondo, K.; Aoyama, T. Synthesis 2008, 3585.
[21] Karthikeyan, J.; Jeganmohan, M.; Cheng, C.-H. Chem.-Eur. J. 2010, 16, 8989.
[22] (a) Suzuma, Y.; Hayashi, S.; Yamamoto, T.; Oe, Y.; Ohta, T.; Ito, Y. Tetrahedron:Asymmetry 2009, 20, 2751.
(b) Loxq, P.; Debono, N.; Gülcemal, S.; Daran, J-C.; Manoury, E.; Poli, R.; Cetinkaya, B.; Labande, A. New J. Chem. 2014, 38, 338.
(c) Zhang, R.; Xu, Q.; Zhang, X.; Zhang, T.; Shi, M. Tetrahedron:Asymmetry 2010, 21, 1928.
[23] (a) Tokunaga, T.; Hume, W. E.; Nagamine, J.; Kawamura, T.; Taiji, M.; Nagata, R. Bioorg. Med. Chem. Lett. 2005, 15, 1789.
(b) Tokunaga, T.; Hume, W. E.; Umezome, T.; Okazaki, K.; Ueki, Y.; Kumagai, K.; Hourai, S.; Nagamine, J.; Seki, H.; Taiji, M.; Noguchi, H.; Nagata, R. J. Med. Chem. 2001, 44, 4641.
[24] Di Malta, A.; Garcia, G.; Roux, R.; Schoentjes, B.; Serradeil-le Gal, C.; Tonnerre, B.; Wagnon, J. WO 2003008407, 2003.
[25] Shintani, R.; Inoue, M.; Hayashi, T. Angew. Chem., Int. Ed. 2006, 45, 3353.
[26] Toullec, P. Y.; Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Org. Lett. 2006, 8, 2715.
[27] Gui, J.; Chen, G.; Cao, P.; Liao, J. Tetrahedron:Asymmetry 2012, 23, 554.
[28] (a) Feng, X. Q.; Du, H. F. Chin. J. Org. Chem. 2015, 35, 259(in Chinese). (冯向青, 杜海峰, 有机化学, 2015, 35, 259.)
(b) Feng, X. Q.; Nie, Y. Z.; Zhang, L. Q.; Yang, J.; Du, H. F. Tetrahedron Lett. 2014, 55, 4581.
[29] Marques, C. S.; Burke, A. J. ChemCatChem 2016, 8, 3518.
[30] Lai, H. S.; Huang, Z. Y.; Wu, Q.; Qin, Y. J. Org. Chem. 2009, 74, 283.
[31] Liu, Z.; Gu, P.; Shi, M.; McDowell, P.; Li, G. G. Org. Lett. 2011, 13, 2314.
[32] Li, Q.; Wan, P.; Wang, S.; Zhuang, Y.; Li, L.; Zhou, Y.; He, Y.; Cao, R.; Qiu, L.; Zhou, Z. Appl. Catal., A 2013, 458, 201.
[33] (a) Yamamoto, Y.; Yohd, M.; Shirai, T.; Ito, H.; Miyaura, N. Chem. Asian J. 2012, 7, 2446.
(b) Yohda, M.; Yamamoto, Y. Tetrahedron:Asymmetry 2015, 26, 1430.
[34] Shintani, R.; Takatsu, K.; Hayashi, T. Chem. Commun. 2010, 46, 6822.
[35] Zhuang, Y.; He, Y. W.; Zhou, Z. H.; Xia, W.; Cheng, C. Y.; Wang, M.; Chen, B.; Zhou, Z. Y.; Pang, J. Y.; Qiu, L.Y. J. Org. Chem. 2015, 80, 6968.
[36] (a) Skaddan, M. B.; Kilbourn, M. R.; Snyder, S. E.; Sherman, P. S.; Desmond, T. J.; Frey, K. A. J. Med. Chem. 2000, 43, 4552.
(b) Selent, J.; Brandt, W.; Pamperin, D.; Goeber, B. Bioorg. Med. Chem. 2006, 14, 1729.
[37] Duan, H. F.; Xie, J. H. Qiao, X. C. Wang, L. X.; Zhou, Q. L. Angew. Chem., Int. Ed. 2008, 47, 4351.
[38] Cai, F.; Pu, X. T.; Qi, X. B.; Lynch, V.; Radha, A.; Ready, J. M. J. Am. Chem. Soc. 2011, 133, 18066.
[39] (a) Zhu, T.-S.; Jin, S.-S.; Xu, M.-H. Angew. Chem., Int. Ed. 2012, 51, 780.
(b) Wang, H.; Zhu, T.-S.; Xu, M.-H. Org. Biomol. Chem. 2012, 10, 9158.
[40] Li, Y.; Zhu, D.-X.; Xu, M.-H. Chem. Commun. 2013, 49, 11659.
[41] Zhu, T.-S.; Xu, M.-H. Chin. J. Chem. 2013, 31, 321.
[42] Melcher, M.-C.; Ivšić, T.; Olagnon, C.; Tenten, C.; Letzen, A.; Strand, D. Chem.-Eur. J. 2018, 24, 2344.
[43] Chang, C.-A.; Uang, T.-Y.; Jian, J.-H.; Zhou, M.-Y.; Chen, M.-L.; Kuo, T.-S.; Wu, P.-Y.; Wu, H.-L. Adv. Synth. Catal. 2018, 360, 3381.
[44] Bartlett, S. L.; Keiter, K. M.; Johnson, J. S. J. Am. Chem. Soc. 2017, 139, 3911.
[45] Jung, J. K.; Johnson, B. R.; Duong, T.; Decaire, M.; Uy, J.; Gharbaoui, T.; Boatman, P. D.; Sage, C. R.; Chen, R.; Richman, J. G.; Connolly, D. T.; Semple, G. J. Med. Chem. 2007, 50, 1445.
[46] Singh, S. B.; Zink, D. L.; Quamina, D. S.; Pelaez, F.; Teran, A.; Felock, P.; Hazuda, D. J. Tetrahedron Lett. 2002, 43, 2351.
[47] Feng, X.; Nie, Y.; Yang, J.; Du, H. Org. Lett. 2012, 14, 624.
[48] Wen, Q.; Zhang, L.; Xiong, J.; Zeng, Q. L. Eur. J. Org. Chem. 2016, 5360.
[49] Zhu, T.-S.; Chen, J.-P.; Xu, M.-H. Chem. Eur. J. 2013, 19, 865.
[50] Zhang, Z.-F.; Zhu, D.-X.; Chen, W.-W.; Xu, B.; Xu, M.-H. Org. Lett. 2017, 19, 2726.
[51] Yu, Y.-N.; Xu, M.-H. Org. Chem. Front. 2014, 1, 738.
[52] (a) Rowley, M.; Hallett, D. J.; Goodacre, S.; Moyes, C.; Craw-forth, J.; Sparey, T. J.; Patel, S.; Marwood, R.; Thomas, S.; Hitzel, L.; O'Connor, D.; Szeto, N.; Castro, J. L.; Hutson, P. H.; MacLeod, A. M. J. Med. Chem. 2001, 44, 1603.
(b) van Niel, M. B.; Collins, I.; Beer, M. S.; Broughton, H. B.; Cheng, S. K.; Goodacre, S. C.; Heald, A.; Locker, K. L.; MacLeod, A. M.; Morrison, D.; Moyes, C. R.; O'Connor, D.; Pike, A.; Rowley, M.; Russell, M. G.; Sohal, B.; Stanton, J. A.; Thomas, S.; Verrier, H.; Watt, A. P.; Castro, J. L. J. Med. Chem. 1999, 42, 2087.
(c) Domagala, J. M.; Hanna, L. D.; Heifetz, C. L.; Hutt, M. P.; Mich, T. F.; Sanchez, J. P.; Solomon, M. J. Med. Chem. 1986, 29, 394.
(d) Rosenblum, S. B.; Huynh, T.; Afonso, A.; Davis, H. R. Jr.; Yumibe, N.; Clader, J. W.; Burnett, D. A. J. Med. Chem. 1998, 41, 973.
[53] Martina, S. L. X.; Jagt, R. B. C.; Vries, J. G.; Feringa B. L.; Minnaard, A. J. Chem. Commun. 2006, 42, 4093.
[54] Jumde, V. R.; Facchetti, S.; Iuliano, A. Tetrahedron:Asymmetry 2010, 21, 2775.
[55] Luo, R. S.; Li, K.; Hu, Y. L.; Tang, W. J. Adv. Synth. Catal. 2013, 355, 1297.
[56] Korenaga, T.; Ko, A.; Uotani, K.; Tanaka, Y.; Sakai, T. Angew. Chem., Int. Ed. 2011, 50, 10703.
[57] Liao, Y. X.; Xing, C. H.; Hu, Q. S. Org. Lett. 2012, 14, 1544.
[58] Huang, L. W.; Zhu, J. B.; Jiao, G. J.; Wang, Z.; Yu, X. X.; Deng, W. P.; Tang, W. J. Angew. Chem., Int. Ed. 2016, 55, 4527.
[59] Bouffard, J.; Itami, K. Org. Lett. 2009, 11, 4410.
[60] Liu, G. X.; Lu, X. Y. J. Am. Chem. Soc. 2006, 128, 16504.
[61] Gallego, G. M.; Sarpong, R. Chem. Sci. 2012, 3, 1338.
[62] Low, D. W.; Pattison, G.; Wieczysty, M. D.; Churchill, G. H.; Lam, H. W. Org. Lett. 2012, 14, 2548.
[63] Zhu, D.-X.; Chen, W.-W.; Xu, M.-H. Tetrahedron 2016.72, 2037.
[64] Chen, D.; Xu, M.-H. Chin. J. Org. Chem. 2017, 37, 1589(in Chinese). (陈雕, 徐明华, 有机化学, 2017, 37, 1589.)
Outlines

/