Recent Advances in Ligand-Promoted Transition-Metal-Catalyzed Remote meta-C—H Functionalization of Arenes

  • Tian Wanfa ,
  • Li Na ,
  • Peng Zihe ,
  • Feng Lihua ,
  • Mai Xi ,
  • He Yongqin
Expand
  • a School of Pharmaceutical Science, Nanchang University, Nanchang 330000;
    b Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330000;
    c Fuzhou Medical College, Nanchang University, Fuzhou, Jiangxi 344000

Received date: 2019-09-09

  Revised date: 2019-11-27

  Online published: 2019-12-19

Supported by

Project supported by the National Natural Science Foundation of China (No. 81860610) and the Young Teachers Training Foundation of Nanchang University (No. 4209-16100009-PY201810).

Abstract

Ligands can regulate both the steric and electronic effects of the catalytic center in transition-metal-catalyzed C-H activation reactions, leading to the site-selective C-H functionalization of arenes. In recent years, ligand-promoted remote C-H functionalization of arenes has developed rapidly. The recent progress on ligand-promoted transition-metal-catalyzed remote meta-selective C-H bond functionalization of arenes is summarized, and the limitations of the research field and prospects for future development are presented.

Cite this article

Tian Wanfa , Li Na , Peng Zihe , Feng Lihua , Mai Xi , He Yongqin . Recent Advances in Ligand-Promoted Transition-Metal-Catalyzed Remote meta-C—H Functionalization of Arenes[J]. Chinese Journal of Organic Chemistry, 2020 , 40(3) : 625 -644 . DOI: 10.6023/cjoc201909015

References

[1] For selected reviews on transition metal catalyzed C—H activation, see: (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
(b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(c) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
(d) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.
(e) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879.
(f) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236.
(g) Li, B. J.; Shi, Z. J. Chem. Sci. 2011, 2, 488.
(h) Fischer, D. F.; Sarpong, R. J. Am. Chem. Soc. 2010, 132, 5926.
(i) Wang, Y.-C.; Ye, Q.-X.; Qiu, G.-S.; Liu, J.-B. Chin. J. Org. Chem. 2018, 38, 1650(in Chinese). (王玉超, 叶秋香, 邱观音生, 刘晋彪, 有机化学, 2018, 38, 1650.)
[2] (a) Engle, M. K.; Mei, T.-S.; Wasa, M.Y.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.
(b) David, L. D.; Stuart, A. M.; Claire, L. M. Chem. Rev. 2017, 117, 8649.
[3] Ozdemir, I.; Demir, S.; Çetinkaya, B.; Gourlaouen, C.; Maseras, F.; Bruneau, C.; Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130, 1156.
[4] (a) Berman, A. M.; Lewis, J. C.; Bergmann, R. G.; Ellman, J. A. J. Am. Chem, Soc. 2008, 130, 14926.
(b) Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14082.
[5] (a) Ren, X. Y.; Wen, P.; Shi, X. K.; Wang, Y. L.; Li, J.; Yang, S. Z.; Yan, H.; Huang, G. S. Org. Lett. 2013, 15, 5194.
(b) Wen, P.; Li, Y. M.; Zhou, K.; Ma, C.; Lan, X. B.; Ma, C. W.; Huang, G. S. Adv. Synth. Catal. 2012, 354, 2135.
[6] Cheng, H.-C.; Lin, J.-L.; Zhang, Y.-F.; Chen, B.; Wang, M. C.; Li, H.; Ma, J.-L. Chin. J. Org. Chem. 2019, 39, 318(in Chinese). (程辉成, 林锦龙, 张耀丰, 陈冰, 王敏, 程丽华, 马姣丽, 有机化学, 2019, 39, 318.)
[7] Huang, H.-T.; Li, T.; Wang, J.-Z.; Qin, G.-P.; Xiao, T.-B. Chin. J. Org. Chem. 2019, 39, 1511(in Chinese). (黄鸿泰, 李涛, 王家状, 秦贵平, 肖铁波, 有机化学, 2019, 39, 1511.)
[8] Jiang, Z.-T.; Wang, B.-Q.; Shi, Z.-J. Chin. J. Chem. 2018, 36, 950.
[9] (a) Yang, Y.-F.; Hong, X.; Yu, J.-Q.; Houk, K. N. Acc. Chem. Res. 2017, 50, 2853.
(b) Dey, A.; Sinha, S. K.; Achar, T. K.; Maiti, D. Angew. Chem., Int. Ed. 2019, 131, 10934.
[10] Leow, D.; Li, G.; Mei, T. S.; Yu, J.-Q. Nature 2012, 486, 518.
[11] Yang, Y.-F.; Cheng, G.-J.; Liu, P.; Leow, D.; Sun, T.-Y.; Chen, P.; Zhang, X.; Yu, J.-Q.; Wu, Y.-D.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 344.
[12] Wan, L.; Dastbaravardeh, N.; Li, G.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 18056.
[13] Xu, H.-J.; Lu, Y.; Farmer, M. E.; Wang, H.-W.; Zhao, D.; Kang, Y.-S.; Sun, W.-Y.; Yu, J.-Q. J. Am. Chem. Soc. 2017, 139, 2200.
[14] Xu, H.-J.; Kang, Y.-S.; Shi, H.; Zhang, P.; Chen, Y.-K.; Zhang, B.; Liu, Z.-Q.; Zhao, J. Sun, W.-Y.; Yu, J.-Q.; Lu, Y. J. Am. Chem. Soc. 2019, 141, 76.
[15] Deng, Y.; Yu, J. Q. Angew. Chem., Int. Ed. 2015, 54, 888.
[16] Bera, M.; Modak, A.; Patra, T.; Maji, A.; Maiti, D. Org. Lett. 2014, 16, 5760.
[17] Li, S.; Ji, H.; Cai, L.; Li, G. Chem. Sci. 2015, 6, 5595.
[18] Li, S.; Cai, L.; Ji, H.; Yang, L.; Li, G. Nat. Commun. 2016, 7, 10443.
[19] Fang, L.; Saint-Denis, T. G.; Taylor, B. L. H.; Ahlquist, S.; Hong, K.; Liu, S.; Han, L.; Houk, K. N.; Yu, J.-Q. J. Am. Chem. Soc. 2017, 139, 10702.
[20] Long, Y.; Lei, F.; Li, G. Adv. Synth. Catal. 2017, 359, 2235.
[21] Maity, S.; Hoque, E.; Dhawa, U.; Maiti, D. Chem. Commun. 2016, 52, 14003.
[22] Zhang, L.; Zhao, C.; Liu, Y.; Xu, J.; Xu, X.; Jin, Z. Angew. Chem., Int. Ed. 2017, 56, 12245.
[23] Wang, B.; Zhou, Y.; Xu, N.-N.; Xu, X.-F.; Xu, X.-H.; Jin, Z. Org. Lett. 2019, 21, 1885.
[24] Xu, J.-C.; Chen, J.-J.; Gao, F.; Xie, S.-G.; Xu, X.-H.; Jin, Z.; Yu, J.-Q. J. Am. Chem. Soc. 2019, 141, 1903.
[25] Chu, L.; Shang, M.; Tanaka, K.; Chen, Q.; Pissarnitski, N.; Streckfuss, E.; Yu, J.-Q. ACS Cent. Sci. 2015, 1, 394.
[26] Jin, Z.; Chu, L.; Chen, Y.-Q.; Yu, J.-Q. Org. Lett. 2018, 20, 425.
[27] Fang, S.-Q; Wang, X.-B.; Yin, F.-C.; Cai, P.; Yang, H.-L.; Kong, L.-Y. Org. Lett. 2019, 21, 1841.
[28] Bera, M.; Maji, A.; Sahoo, S. K.; Maiti, D. Angew. Chem., Int. Ed. 2015, 54, 8515.
[29] Maji, A.; Bhaskararao, B.; Singha, S.; Sunoj, R. B.; Maiti, D. Chem. Sci. 2016, 7, 3147.
[30] Modak, A.; Patra, T.; Chowdhury, R.; Raul, S.; Maiti, D. Organometallics 2017, 36, 2418.
[31] Bera, M.; Agasti, S.; Chowdhury, R.; Mondal, R.; Pal, D.; Maiti, D. Angew. Chem., Int. Ed. 2017, 56, 5272.
[32] Bag, S.; Jayarajan, R.; Dutta, U.; Chowdhury, R.; Mondal, R.; Maiti, D. Angew. Chem., Int. Ed. 2017, 56, 12538.
[33] Bag, S.; Jayarajan, R.; Mondal, R.; Maiti, D. Angew. Chem., Int. Ed. 2017, 56, 3182.
[34] Yang, G.-Q.; Lindovska, P.; Zhu, D.-J.; Kim, J.; Wang, P.; Tang, R.-Y.; Movassaghi, M.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 10807.
[35] Yang, G.-Q.; Zhu, D.-J.; Wang, P.; Tang, R.-Y.; Yu, J.-Q. Chem.-Eur. J. 2018, 24, 3434.
[36] Lee, S.; Lee, H.; Tan, K. L. J. Am. Chem. Soc. 2013, 135, 18778.
[37] Mi, R.-J.; Sun, J.; Kuhn, F. E.; Zhou, M.-D.; Xu, Z.-Q. Chem. Commun. 2017, 53, 13209.
[38] Mi, R.-J.; Sun, Y.-Z.; Wang, J.-Y.; Sun, J.; Xu, Z.; Zhou, M.-D. Org. Lett. 2018, 20, 5126.
[39] Bera, M.; Sahoo, S. K.; Maiti, D. ACS Catal. 2016, 6, 3575.
[40] (a) Wang, X.-C.; Gong, W.; Fang, L. Z.; Zhu, R. Y.; Li, S.; Engle, K. M.; Yu, J.-Q. Nature 2015, 519, 334.
(b) Ye, J.; Lautens, M. Nat. Chem. 2015, 7, 863.
(c) Della C. N.; Fontana, M.; Motti, E.; Catellani, M. Acc. Chem. Res. 2016, 49, 1389.
[41] Shen, P.-X.; Wang, X.-C.; Wang, P.; Zhu, R.-Y.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 11574.
[42] Dong, Z.; Wang, J. C.; Dong, G. B. J. Am. Chem. Soc. 2015, 137, 5887.
[43] (a) Ryabov, A. D.; Yatsimirskii, A. K. Inorg. Chem. 1984, 23, 789.
(b) Ryabov, A. D. Inorg. Chem. 1987, 26, 1252.
[44] Shi, H.; Wang, P.; Suzuki, S.; Farmer, M. E.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138, 14876.
[45] Ding, Q.; Ye, S.; Cheng, G.; Wang, P.; Farmer, M. E.; Yu, J.-Q. J. Am. Chem. Soc. 2017, 139, 417.
[46] Wang, P.; Farmer, M. E.; Yu, J.-Q. Angew. Chem., Int. Ed. 2017, 56, 5125.
[47] Li, G.-C.; Wang, P.; Farmer, M. E.; Yu, J.-Q. Angew. Chem., Int. Ed. 2017, 56, 6874.
[48] Cheng, G.-L.; Wang, P.; Yu, J.-Q. Angew. Chem., Int. Ed. 2017, 56, 8183.
[49] Shi, H.; Herron, A. N.; Shao, Y.; Shao, Q.; Yu, J.-Q. Nature 2018, 558, 581.
[50] Farmer, M. E.; Wang, P.; Shi, H.; Yu, J.-Q. ACS Catal. 2018, 8, 7362.
[51] Ying, C. H.; Yan, S.-B.; Duan, W.-L. Org. Lett. 2014, 16, 500.
[52] (a) Ye, M. C.; Gao, G. L.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 6964.
(b) Ye, M.; Gao, G. L.; Edmunds, A. J. F.; Worthington, P. A.; Morris, J. A.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 19090.
[53] Bisht, R.; Chattopadhyay, B. J. Am. Chem. Soc. 2016, 138, 84.
[54] Cong, X. F.; Tang, H. R.; Wu, C.; Zeng, X. M. Organometallics 2013, 32, 6565.
[55] He, Y. Q.; Wu, Z. Y.; Ma, C. W.; Zhou, X. Q.; Liu, X. X.; Wang, X. J.; Huang, G. S. Adv. Synth. Catal. 2016, 358, 375.
[56] Wang, P.; Verma, P.; Xia, G.-Q.; Shi, J.; Qiao, J. X.; Tao, S.-W.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. Nature 2017, 551, 489.
[57] Salamanca, V.; Toledo, A.; Albeniz, A. C. J. Am. Chem. Soc. 2018, 140, 17851.
[58] Haines, B. E.; Musaev, D. G. ACS Catal. 2015, 5, 830.
[59] Zhang, Z. P.; Tanaka, K.; Yu, J.-Q. Nature 2017, 543, 538.
[60] Achar, T. K.; Ramakrishna, K.; Pal, T.; Porey, S.; Dolui, P.; Biswas, J. P.; Maiti, D. Chem.-Eur. J. 2018, 24, 17906.
[61] Kuninobu, Y.; Ida, H.; Nishi, M.; Kanai, M. Nat. Chem. 2015, 7, 712.
[62] Davis, H. J.; Mihai, M.; Phipps, R. J. J. Am. Chem. Soc. 2016, 138, 12759.
Outlines

/