Recent Advance in the Transition-Metal-Catalyzed Carbene Insertion Reactionsof Si—H Bond

  • Zhang Huimiao ,
  • Li Lingzhi ,
  • Shen Fangqi ,
  • Cai Tao ,
  • Shen Runpu
Expand
  • a College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000;
    b College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070

Received date: 2019-11-06

  Revised date: 2019-12-04

  Online published: 2019-12-19

Supported by

Project supported by the Youth Foud of Shaoxing University (No. 20185019).

Abstract

Organosilicon compounds have been widely used in organic synthesis, biomedicine, material science and other fields. The development of simple and efficient C——Si bond construction methodology has attracted extensive attention from scientists. Transition-metal-catalyzed carbene insertion reaction of Si——H bond is one of the important methods to form C——Si bond. It not only has the advantages of simple operation, mild reaction conditions and high atom economy, but also can be used to synthesize various chiral organosilanes with high enantioselectivity through the regulation of chiral ligands. In recent years, achieved rapid development has been in this field, and various new carbene precursors and metal catalytic systems have been emerged. According to the group of transition metal elements, recent advance in the iron, copper, zinc, ruthenium, rhodium, palladium, silver, iridium and gold catalyzed carbene insertion reactions of Si——H bond since 2012 is reviewed in five parts.

Cite this article

Zhang Huimiao , Li Lingzhi , Shen Fangqi , Cai Tao , Shen Runpu . Recent Advance in the Transition-Metal-Catalyzed Carbene Insertion Reactionsof Si—H Bond[J]. Chinese Journal of Organic Chemistry, 2020 , 40(4) : 873 -885 . DOI: 10.6023/cjoc201911009

References

[1] (a) Rappoport, Z.; Apeloig, Y. Chemistry of Organosilicon Compounds, Wiley-VCH, New York, 2001.
(b) Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35, 835.
(c) Luo, H. Q.; Zhang, Z. P.; Liu, H. D.; Liu, H. J. Chin. J. Org. Chem. 2015, 35, 802(in Chinese). (罗海清, 张志鹏, 刘海东, 柳辉金, 有机化学, 2015, 35, 802.)
(d) Yang, Q.; Liu, L.; Zhang, W.-X.; Xi, Z. F. Chin. J. Org. Chem. 2018, 38, 272(in Chinese). (杨琪, 刘亮, 张文雄, 席振峰, 有机化学, 2018, 38, 272.)
[2] Shang, X.; Liu, Z.-Q. Org. Biomol. Chem. 2016, 14, 7829.
[3] (a) Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley-VCH, Weinheim, 2000.
(b) Auner, N.; Weis, J. Organosilicon Chemistry, Wiley-VCH, Weinheim, 2003.
(c) Fuchs, P. L. Handbook of Reagents for Organic Synthesis Reagents for Silicon-Mediated Organic Synthesis, Wiley-VCH, Weinheim, 2011.
[4] (a)Yang, Y.; Wang, C. Sci. China:Chem. 2015, 58, 1266.
(b) Huang, H. T.; Li, T.; Wang, J. Z.; Qin, G. P.; Xiao, T. B. Chin. J. Org. Chem. 2019, 39, 1511(in Chinese). (黄鸿泰, 李涛, 王家状, 秦贵平, 肖铁波, 有机化学, 2019, 39, 1511.)
(c) Sharma, U.; Sharma, R.; Kumar, R.; Kumar, I.; Singh, B. Synthesis 2015, 47, 2347.
(d) Park, S. Chin. J. Chem. 2019, 37, 1057.
(e) Cheng, Z.; Xing, S.; Guo, J.; Cheng, B.; Hu, L.-F.; Zhang, X.-H.; Lu, Z. Chin. J. Chem. 2019, 37, 457.
[5] Zhu, S. F.; Zhou, Q. L. Acc. Chem. Res. 2012, 45, 1365.
[6] Keipour, H.; Carreras, V.; Ollevier, T. Org. Biomol. Chem. 2017, 15, 5441.
[7] (a) Shen, J. J.; Zhu, S. F.; Cai, Y.; Xu, H.; Xie, X. L.; Zhou, Q. L. Angew. Chem., Int. Ed. 2014, 53, 13188.
(b) Zhu, S.; Zhou. Q. L. Nat. Sci. Rev. 2014, 4, 580.
(c) Liu, J.; Hu, L.; Wang, L.; Chen, H.; Deng, L. J. Am. Chem. Soc. 2017, 139, 3876.
(d) Griffin, J. R.; Wendell, C. I.; Garwin, J. A.; White, M. C. J. Am. Chem. Soc. 2017, 139, 13624.
[8] Scharrer, E.; Brookhart, M. J. Organomet. Chem. 1995, 497, 61.
[9] Duan, Y.; Lin, J.-H.; Xiao, J.-C.; Gu, Y.-C. Org. Chem. Front 2017, 4, 1917.
[10] Keipour, H.; Ollevier, T. Org. Lett. 2017, 19, 5736.
[11] Gu, H.; Han, Z.; Xie, H.; Lin, X. Org. Lett. 2018, 20, 6544.
[12] Wang, E.-H.; Ping, Y.-J.; Li, Z.-R.; Qin, H.; Xu, Z.-J.; Che, C.-M. Org. Lett. 2018, 20, 4641.
[13] Tanbouza, N.; Keipour, H.; Ollevier, T. RSC Adv. 2019, 9, 31241.
[14] Röske, A.; Alt, I.; Plietker, B. ChemCatChem 2019, 11, 5260.
[15] Nakagawa, Y.; Chanthamath, S.; Fujisawa, I.; Shibatomi, K.; Iwasa, S. Chem. Commun. 2017, 53, 3753.
[16] Bagheri, V.; Doyle, M. P.; Taunton, J.; Claxton, E. E. J. Org. Chem. 1988, 53, 6158.
[17] Hrdina, R.; Guénée, L.; Moraleda, D.; Lacour, J. Organometallics 2013, 32, 473.
[18] Chen, D.; Zhu, D.-X.; Xu, M.-H. J. Am. Chem. Soc. 2016, 138, 1498.
[19] Loskutova, N. L.; Shvydkiy, N. V.; Nelyubina, Y. V.; Perekalin, D. S. J. Organomet. Chem. 2018, 867, 86.
[20] Archambeau, A.; Miege, F.; Meyer, C.; Cossy, J. Acc. Chem. Res. 2015, 48, 1021 and references therein.
[21] Mata, S.; López, L. A.; Vicente, R. Angew. Chem., Int. Ed. 2018, 57, 11422.
[22] Huang, M.-Y.; Yang, J.-M.; Zhao, Y.-T.; Zhu, S.-F. ACS Catal. 2019, 9, 5353.
[23] Yasutomi, Y.; Suematsu, H.; Katsuki, T. J. Am. Chem. Soc. 2010, 132, 4510.
[24] Wang, J.-C.; Xu, Z.-J.; Guo, Z.; Deng, Q.-H.; Zhou, C.-Y.; Wan, X.-L.; Che, C.-M. Chem. Commun. 2012, 48, 4299.
[25] Wang, Y.; Cui, H.; Wei, Z.-W.; Wang, H.-P.; Zhang, L.; Su, C.-Y. Chem. Sci. 2017, 8, 775.
[26] Liu, Z.; Huo, J.; Fu, T.; Tan, H.; Ye, F.; Hossain, M. L.; Wang, J. Chem. Commun. 2018, 54, 11419.
[27] Khade, R. L.; Chandgude, A. L.; Fasan, R.; Zhang, Y. ChemCatChem 2019, 11, 3101.
[28] (a) Watanabe, H.; Nakano, T.; Araki, Y.; Matsumoto, H.; Nagai, Y. J. Organomet. Chem. 1974, 69, 389.
(b) Landais, Y.; Planchenault, D. Tetrahedron 1997, 53, 2855.
(c) Dakin, L. A.; Schaus, S. E.; Jacobsen, E. N.; Panek, J. S. Tetrahedron Lett. 1998, 39, 8947.
(d) Dakin, L. A.; Ong, P. C.; Panek, J. S.; Staples, R. J.; Stavropoulos, P. Organometallics 2000, 19, 2896.
(e) Zhang, Y.-Z.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2008, 47, 8496.
(f) Wu, J.; Chen, Y.; Panek, J. S. Org. Lett. 2010, 12, 2112.
(g) Wu, J.; Panek, J. S. J. Org. Chem. 2011, 76, 9900.
[29] Hyde, S.; Veliks, J.; Liégault, B.; Grassi, D.; Taillefer, M.; Gouverneur, V. Angew. Chem., Int. Ed. 2016, 55, 3785.
[30] Keipour, H.; Jalba, A.; Delage-Laurin, L.; Ollevier, T. J. Org. Chem. 2017, 82, 3000.
[31] Iglesias, M. J.; Nicasio, M. C.; Caballero, A.; Pérez, P. J. Dalton Trans. 2013, 42, 1191.
[32] Liu, Z.; Li, Q.; Yang, Y.; Bi, X. Chem. Commun. 2017, 53, 2503.
[33] Kidonakis, M.; Stratakis, M. Org. Lett. 2018, 20, 4086.
[34] Vicente, R.; González, J.; Riesgo, L.; González, J.; López, L. A. Angew. Chem., Int. Ed. 2012, 51, 8063.
[35] (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323.
(b) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256.
[36] Mata, S.; López, L. A.; Vicente, R. Chem.-Eur. J. 2015, 21, 8998.
[37] Mata, S.; López, L. A.; Vicente, R. Angew. Chem., Int. Ed. 2017, 56, 7930.
Outlines

/