Supramolecular Copolymers Driven by Quadruple Hydrogen Bonding and Host-Guest Interactions

  • Xiao Tangxin ,
  • Zhou Ling ,
  • Wei Xiaoyan ,
  • Li Zhengyi ,
  • Sun Xiaoqiang
Expand
  • School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164

Received date: 2019-11-07

  Revised date: 2019-11-30

  Online published: 2019-12-19

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21702020, 21572026).

Abstract

A heteroditopic monomer (H) comprised of ureidopyrimidinone (UPy) group and benzo-21-crown-7 motif and a homoditopic monomer (G) containing two dialkylammonium salt units have been successfully prepared. The functional groups both in H and G are linked together by a short spacer. Through quadruple hydrogen bonds, H can self-assemble into dimers, which are capable of complexing with G via host-guest interaction to form linear supramolecular copolymers. The supramolecular copolymers were fully characterized by various techniques, such as concentration-dependent 1H NMR, viscosity measurements, and scanning electron microscope (SEM). The results will inspire the orthogonal construction of supramolecular polymers for smart materials in more fields.

Cite this article

Xiao Tangxin , Zhou Ling , Wei Xiaoyan , Li Zhengyi , Sun Xiaoqiang . Supramolecular Copolymers Driven by Quadruple Hydrogen Bonding and Host-Guest Interactions[J]. Chinese Journal of Organic Chemistry, 2020 , 40(4) : 944 -949 . DOI: 10.6023/cjoc201911014

References

[1] Bandy, T. J.; Brewer, A.; Burns, J. R.; Marth, G.; Nguyen, T.; Stulz, E. Chem. Soc. Rev. 2011, 40, 138.
[2] McLaughlin, C. K.; Hamblin, G. D.; Sleiman, H. F. Chem. Soc. Rev. 2011, 40, 5647.
[3] Watson, J. D.; Crick, F. H. C. Nature 1953, 171, 737.
[4] Goor, O. J. G. M.; Hendrikse, S. I. S.; Dankers, P. Y. W.; Meijer, E. W. Chem. Soc. Rev. 2017, 46, 6621.
[5] Würthner, F.; Saha-Möller, C. R.; Fimmel, B.; Ogi, S.; Leowanawat, P.; Schmidt, D. Chem. Rev. 2016, 116, 962.
[6] Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Chem. Rev. 2015, 115, 7196.
[7] Ma, X.; Tian, H. Acc. Chem. Res. 2014, 47, 1971.
[8] Yan, X.; Wang, F.; Zheng, B.; Huang, F. Chem. Soc. Rev. 2012, 41, 6042.
[9] Brunsveld, L.; Folmer, B. J.; Meijer, E. W.; Sijbesma, R. P. Chem. Rev. 2001, 101, 4071.
[10] Li, B.; Wang, B.; Huang, X.; Dai, L.; Cui, L.; Li, J.; Jia, X.; Li, C. Angew. Chem., Int. Ed. 2019, 58, 3885.
[11] Li, M, Han, K, Li, J, Jia X, Li C. Acta Polym. Sin. 2017, 129(in Chinese). (李明阳, 韩康, 李健, 贾学顺, 李春举, 高分子学报, 2017, 129.)
[12] Zheng, B.; Hou, Y.; Gao, L.; Zhang, M. Chin. J. Chem. 2019, 37, 843.
[13] Zhao, Y.-K.; Gao, Z.-Z.; Wang, H.; Zhang, D.-W.; Li, Z.-T. Chin. Chem. Lett. 2019, 30, 127.
[14] Chen, Y.; Sun, S.; Lu, D.; Shi, Y.; Yao, Y. Chin. Chem. Lett. 2019, 30, 37.
[15] Yin, G.; Chen, L.; Wang, C.; Yang, H. Chin. J. Chem. 2018, 36, 134.
[16] Xu, C.; Xu, L.; Ma, X. Chin. Chem. Lett. 2018, 29, 970.
[17] Wang, X.; Yang, Y.; Fan, L.; Yang, F.; Wu, D. Sci. China Chem. 2018, 61,311.
[18] Xiao, T.; Zhou, L.; Sun, X.-Q.; Huang, F.; Lin, C.; Wang, L. Chin. Chem. Lett. 2020, 31, 1.
[19] Wei, P.; Yan, X.; Huang, F. Chem. Soc. Rev. 2015, 44, 815.
[20] Elacqua, E.; Lye, D. S.; Weck, M. Acc. Chem. Res. 2014, 47, 2405.
[21] Li, S.-L.; Xiao, T.; Lin, C.; Wang, L. Chem. Soc. Rev. 2012, 41, 5950.
[22] Wang, Q.; Chen, Y.; Liu, Y. Polym. Chem. 2013, 4, 4192.
[23] Yan, X.; Xu, D.; Chi, X.; Chen, J.; Dong, S.; Ding, X.; Yu, Y.; Huang, F. Adv. Mater. 2012, 24, 362.
[24] Lu, C.; Zhang, M.; Tang, D.; Yan, X.; Zhang, Z.; Zhou, Z.; Song, B.; Wang, H.; Li, X.; Yin, S.; Sepehrpour, H.; Stang, P. J. J. Am. Chem. Soc. 2018, 140, 7674.
[25] Zhang, Z.; Liu, Y.; Zhao, J.; Yan, X. Polym. Chem. 2019, 11, 367.
[26] Wang, Q.; Cheng, M.; Tian, L.; Fan, Q.; Jiang, J. Polym. Chem. 2017, 8, 6058.
[27] Kim, D. S.; Chang, J.; Leem, S.; Park, J. S.; Thordarson, P.; Sessler, J. L. J. Am. Chem. Soc. 2015, 137, 16038.
[28] Hu, X.-Y.; Zhang, P.; Wu, X.; Xia, W.; Xiao, T.; Jiang, J.; Lin, C.; Wang, L. Polym. Chem. 2012, 3, 3060.
[29] Guan, Y.; Ni, M.; Hu, X.; Xiao, T.; Xiong, S.; Lin, C.; Wang, L. Chem. Comm. 2012, 48, 8529.
[30] Li, S.-L.; Xiao, T.; Wu, Y.; Jiang, J.; Wang, L. Chem. Commun. 2011, 47, 6903.
[31] Xu, L. N.; Chen, D.; Zhang, Q.; He, T.; Lu, C. J.; Shen, X.; Tang, D. T.; Qiu, H. Y.; Zhang, M. M.; Yin, S. C. Polym. Chem. 2018, 9, 399.
[32] Shangguan, L.; Xing, H.; Mondal, J. H.; Shi, B. Chem. Commun. 2017, 53, 889.
[33] Xiao, T.; Feng, X.; Wang, Q.; Lin, C.; Wang, L.; Pan, Y. Chem. Commun. 2013, 49, 8329.
[34] Beijer, F. H.; Sijbesma, R. P.; Kooijman, H.; Spek, A. L.; Meijer, E. W. J. Am. Chem. Soc. 1998, 120, 6761.
[35] Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Science 1997, 278, 1601.
[36] Xiao, T.; Zhong, W.; Qi, L.; Gu, J.; Feng, X.; Yin, Y.; Li, Z.-Y.; Sun, X.-Q.; Cheng, M.; Wang, L. Polym. Chem. 2019, 10, 3342.
[37] Xiao, T.; Xu, L.; Wang, J.; Li, Z.-Y.; Sun, X.-Q.; Wang, L. Org. Chem. Front. 2019, 6, 936.
[38] Yan, X.; Liu, Z.; Zhang, Q.; Lopez, J.; Wang, H.; Wu, H. C.; Niu, S.; Yan, H.; Wang, S.; Lei, T.; Li, J.; Qi, D.; Huang, P.; Huang, J.; Zhang, Y.; Wang, Y.; Li, G.; Tok, J. B.; Chen, X.; Bao, Z. J. Am. Chem. Soc. 2018, 140, 5280.
[39] Song, Y.; Liu, Y.; Qi, T.; Li, G. L. Angew. Chem., Int. Ed. 2018, 57, 13838.
[40] Liu, M.; Liu, P.; Lu, G.; Xu, Z.; Yao, X. Angew. Chem., Int. Ed. 2018, 57, 11242.
[41] Qin, B.; Zhang, S.; Song, Q.; Huang, Z.; Xu, J. F.; Zhang, X. Angew. Chem., Int. Ed. 2017, 56, 7639.
[42] Peng, H.-Q.; Zheng, X.; Han, T.; Kwok, R. T. K.; Lam, J. W. Y.; Huang, X.; Tang, B. Z. J. Am. Chem. Soc. 2017, 139, 10150.
[43] Lavrenova, A.; Balkenende, D. W. R.; Sagara, Y.; Schrettl, S.; Simon, Y. C.; Weder, C. J. Am. Chem. Soc. 2017, 139, 4302.
[44] Peng, H.-Q.; Sun, C.-L.; Niu, L.-Y.; Chen, Y.-Z.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z. Adv. Funct. Mater. 2016, 26, 5483.
[45] Fu, X.; Gu, R.-R.; Zhang, Q.; Rao, S.-J.; Zheng, X.-L.; Qu, D.-H.; Tian, H. Polym. Chem. 2016, 7, 2166.
[46] Xiao, T.; Xu, L.; Götz, J.; Cheng, M.; Wuerthner, F.; Gu, J.; Feng, X.; Li, Z.-Y.; Sun, X.; Wang, L. Mater. Chem. Front. 2019, 7, 1526-1540.
[47] Chen, J. Z.; Yan, X. Z.; Chi, X. D.; Wu, X. J.; Zhang, M. M.; Han, C. Y.; Hu, B. J.; Yu, Y. H.; Huang, F. H. Polym. Chem. 2012, 3, 3175.
[48] Yan, X.; Zhou, M.; Chen, J.; Chi, X.; Dong, S.; Zhang, M.; Ding, X.; Yu, Y.; Shao, S.; Huang, F. Chem. Commun. 2011, 47, 7086.
[49] Zhang, C.; Li, S.; Zhang, J.; Zhu, K.; Li, N.; Huang, F. Org. Lett. 2007, 9, 5553.
[50] Xu, L.; Shen, X.; Zhou, Z.; He, T.; Zhang, J.; Qiu, H.; Saha, M. L.; Yin, S.; Stang, P. J. J. Am. Chem. Soc. 2018, 140, 16920.
[51] Li, X.; Wang, L.; Deng, Y.; Luo, Z.; Zhang, Q.; Dong, S.; Han, C. Chem. Commun. 2018, 54, 12459.
[52] Zhang, M.; Yin, S.; Zhang, J.; Zhou, Z.; Saha, M. L.; Lu, C.; Stang, P. J. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 3044.
[53] Jiang, W.; Schäfer, A.; Mohr, P. C.; Schalley, C. A. J. Am. Chem. Soc. 2010, 132, 2309.
[54] Xiao, T. X.; Qi, L. J.; Zhong, W. W.; Lin, C.; Wang, R. B.; Wang, L. Y. Mater. Chem. Front. 2019, 3, 1973.
[55] Xiao, T.; Zhou, L.; Xu, L.; Zhong, W.; Zhao, W.; Sun, X.-Q.; Elmes, R. B. P. Chin. Chem. Lett. 2019, 30, 271.
[56] Xiao, T.; Zhong, W.; Zhou, L.; Xu, L.; Sun, X.-Q.; Elmes, R. B. P.; Hu, X.-Y.; Wang, L. Chin. Chem. Lett. 2019, 30, 31.
[57] Xiao, T.; Zhong, W.; Xu, L.; Sun, X.-Q.; Hu, X.-Y.; Wang, L. Org. Biomol. Chem. 2019, 17, 1336.
[58] Xiao, T.; Xu, L.; Zhou, L.; Sun, X.-Q.; Lin, C.; Wang, L. J. Mater. Chem. B 2019, 7, 1526.
[59] Xiao, T.; Wang, L. Tetrahedron Lett. 2018, 59, 1172.
[60] Yan, X.; Xu, D.; Chen, J.; Zhang, M.; Hu, B.; Yu, Y.; Huang, F. Polym. Chem. 2013, 4, 3312.
[61] Chen, Z.-Q.; Chen, T.; Liu, J.-X.; Zhang, G.-F.; Li, C.; Gong, W.-L.; Xiong, Z.-J.; Xie, N.-H.; Tang, B. Z.; Zhu, M.-Q. Macromolecules 2015, 48, 7823.
[62] Czech, A.; Czech, B. P.; Bartsch, R. A. J. Heterocycl. Chem. 1988, 25, 1841.
[63] Keizer, H. M.; Sijbesma, R. P.; Meijer, E. W. Eur. J. Org. Chem. 2004, 2553.
[64] Rao, M. L. N.; Dasgupta, P. Tetrahedron Lett. 2012, 53, 162.
Outlines

/