Nickel-Catalyzed Negishi Coupling of Cyclobutanone Oxime Esters with Aryl Zinc Reagents

  • Shuai Bin ,
  • Li Zhao-Ming ,
  • Qiu Hui ,
  • Fang Ping ,
  • Mei Tian-Sheng
Expand
  • State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032

Received date: 2019-11-08

  Revised date: 2019-12-11

  Online published: 2019-12-19

Supported by

Project supported by the Strategic Priority Research Program (No. XDB20000000), the National Natural Science Foundation of China (Nos. 21572245, 21772222, 21772220), and the Shanghai Committee of Science and Technology (Nos. 17JC1401200, 18JC1415600).

Abstract

A nickel-catalyzed Negishi coupling of cyclobutanone oxime esters with aryl zinc reagents has been developed, in which nickel serves both as an initiator for imine radicals and a catalyst for the coupling of aryl zinc reagents with oxime esters. The protocol can avoid the use of poisonous cyanide and has broad substrate scope as well as good functional group compatibility. Therefore, this method provides an attractive strategy for the synthesis of valuable nitriles. Preliminary mechanistic studies indicate that a radical pathway is involved in the product formation.

Cite this article

Shuai Bin , Li Zhao-Ming , Qiu Hui , Fang Ping , Mei Tian-Sheng . Nickel-Catalyzed Negishi Coupling of Cyclobutanone Oxime Esters with Aryl Zinc Reagents[J]. Chinese Journal of Organic Chemistry, 2020 , 40(3) : 651 -662 . DOI: 10.6023/cjoc201911016

References

[1] (a) Wu, X.; Zhu, C. Chin. J. Chem. 2019, 37, 171.
(b) Li, C.; Zhu, C. Acta Chim. Sinica 2019, 77, 771(in Chinese). (李超忠, 朱晨, 化学学报, 2019, 77, 771.)
(c) Smith, J. M.; Harwood, S. J.; Baran, P. S. Acc. Chem. Res. 2018, 51, 1807.
(d) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692.
(e) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2016, 55, 58.
[2] For selected reviews on merger of transition metal catalysis with alkyl radical, see: (a) Feng, Z.; Xiao, Y.-L.; Zhang, X. Acc. Chem. Res. 2018, 51, 2264.
(b) Wang, F.; Chen, P.; Liu, G. Acc. Chem. Res. 2018, 51, 2036.
(c) Green, S. A.; Crossley, S. W. M.; Matos, J. L. M.; Shevick, S. L.; Shenvi, R. A. Acc. Chem. Res. 2018, 51, 2628.
(d) Crossley, S. W. M.; Obradors, C.; Martinez, R. M.; Shenvi, R. A. Chem. Rev. 2016, 116, 8912.
(e) Liang, K.; Xia, C. Chin. J. Chem. 2017, 35, 255.
(f) Jahn, U. Radicals in Transition Metal Catalyzed Reactions? Transition Metal Catalyzed Radical Reactions? A Fruitful Interplay Anyway. In Radicals in Synthesis III, Eds.: Heinrich, M.; Gansäuer, A., Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, p. 323.
(g) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
(h) Kochi, J. K. Acc. Chem. Res. 1974, 7, 351.
(i) Zhao, J.; Duan, X.; Guo, L.-N. Chin. J. Org. Chem. 2017, 37, 2498(in Chinese). (赵景峰, 段新华, 郭丽娜, 有机化学, 2017, 37, 2498.)
(j) Chen, D.; Yang, W.; Yao, Y.; Yang, X.; Deng, Y.; Yang, D. Chin. J. Org. Chem. 2018, 38, 2571(in Chinese). (陈董涵, 杨文, 姚永祺, 杨新, 邓颖颖, 杨定乔, 有机化学, 2018, 38, 2571.)
[3] (a) Bour, J. R.; Ferguson, D. M.; McClain, E. J.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2019, 141, 8914.
(b) Camasso, N. M.; Sanford, M. S. Science 2015, 347, 1218.
(c) Tasker, S. Z.; Stanley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
(d) Takahashi, T.; Kanna, K. Modern Organonickel Chemistry, Wiley-VCH, Weinheim, Germany, 2005, pp. 41.
[4] (a) Wang, K.; Kong, W. Chin. J. Chem. 2018, 36, 247.
(b) Fu, G. C. ACS Cent. Sci. 2017, 3, 692.
(c) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015, 115, 9587.
(d) Hu, X. Chem. Sci. 2011, 2, 1867.
(e) Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004, 346, 1525.
[5] For selected recent examples on Ni-catalyzed cross-coupling with alkyl halides, see: (a) Wang, X.; Ma, G.; Peng, Y.; Gong, H. J. Am. Chem. Soc. 2018, 140, 14490.
(b) Biswas, S.; Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192.
(c) Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 624.
(d) Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 6694.
(e) Fischer, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 4594.
(f) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726.
(g) Devasagayaraj, A.; Stüdemann, T.; Knochel, P. Angew. Chem., Int. Ed. 1995, 34, 2723.
[6] For selected recent examples on Ni-catalyzed cross-coupling with sulfones, see: (a) Merchant, R. R.; Edwards, J. T.; Qin, T.; Kruszyk, M. M.; Bi, C.; Che, G.; Bao D-H.; Qiao, W.; Sun, L.; Collins, M. R.; Gallego, G. M.; Mousseau, J. J.; Nuhant, P.; Baran, P. S. Science 2018, 360, 75.
(b) Ariki, Z. T.; Maekawa, Y.; Zambo, M.; Crudden, C. M. J. Am. Chem. Soc. 2018, 140, 78.
(c) Liu, M.; Zheng, Y.; Qiu, G.; Wu, J. Org. Chem. Front. 2018, 5, 2615.
(d) Wu, J.-C.; Gong, L.-B.; Xia, Y.; Song, R.-J.; Xie, Y.-X.; Li, J.-H. Angew. Chem., Int. Ed. 2012, 51, 9909.
[7] For selected recent examples on Ni-catalyzed cross-coupling with redox active esters, see: (a) Ni, S.; Padial, N. M.; Kingston, C.; Baran, P. S. J. Am. Chem. Soc. 2019, 141, 6726.
(b) Chen, T.; Zhang, H.; Mykhailiuk, P. K.; Baran, P. S. Angew. Chem., Int. Ed. 2019, 58, 2454.
(c) Edwards, J. T.; Merchant, R. R.; McClymont, K. S.; Knouse, K. W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, D.-H.; We, F.-L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Nature, 2017, 545, 213.
(d) Cornella, J.; Edwards, J. T.; Qin, T. Baran, P. S. J. Am. Chem. Soc. 2016, 138, 2174.
(e) Qin T.; Cornella, J.; Li, C.; Baran, P. S. Science 2016, 352, 801.
(f) Ye, Y.; Chen, H.; Sessler, J. H.; Gong, H. J. Am. Chem. Soc. 2019, 141, 820.
(g) Huihui, K. M.; Caputo, J. A.; Melchor, Z.; Weix, D. J. J. Am. Chem. Soc. 2016, 138, 5016.
(h) Wang, P.; Zhao, B.; Yuan, Y.; Shi, Z. Chem. Commun. 2019, 55, 1971.
(i) Yang, L.; Zhang, J-Y.; Duan, X-H.; Gao, P.; Jiao, J.; Guo, L-N. J. Org. Chem. 2019, 84, 8615.
[8] For selected reviews on cycloketone oximes, see: (a) Morcillo, S. P. Angew. Chem., Int. Ed. 2019, 58, 14044.
(b) Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Synthesis 2018, 50, 1569.
(c) Davies, J.; Morcillo, S. P.; Douglas, J. J.; Leonori, D. Chem.- Eur. J. 2018, 24, 12154.
(d) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.
[9] Boivin, J.; Fouquet, E.; Zard, S. Z. J. Am. Chem. Soc. 1991, 113, 1055.
[10] Boivin, J.; Schiano, A. M.; Zard, S. Z. Tetrahedron Lett. 1992, 33, 7849.
[11] For selected examples on Ni-catalyzed ring cleavage of cyclobutanone oximes, see: (a) Angelini, L.; Davies, J.; Simonetti, M.; Leonori, D. Angew. Chem., Int. Ed. 2019, 58, 5003.
(b) Tang, Y.-Q.; Yang, J.-C.; Wang, L.; Guo, L.-N. Org. Lett. 2019, 21, 5178.
(c) Gu, Y.-R.; Duan, X.-H.; Yang, L.; Guo, L.-N. Org. Lett. 2017, 19, 5908.
(d) Ding, D.; Lan, Y.; Lin, Z.; Wang, C. Org. Lett. 2019, 21, 2723.
[12] For selected examples on Cu-catalyzed ring cleavage of cyclobutanone oximes, see: (a) Liu, Z.-L.; Shen, H.-G.; Xiao, H.-W.; Li, C.-Z. Org. Lett. 2019, 21, 5201.
(b) Wang, P.-P.; Zhao, B.-L.; Yuan, Y.; Shi, Z.-Z. Chem. Commun. 2019, 55, 1971.
(c) Zhao, B.; Shi, Z.-Z. Angew, Chem., Int. Ed. 2017, 56, 12727.
(d) Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 15505.
(e) Zhang, J. Y.; Duan, X. H.; Yang, J. H.; Guo, L. N. J. Org. Chem. 2018, 83, 4239.
(f) Ai, W.-Y; Liu, Y.-Q; Wang, Q.; Liu, Q. Org. Lett. 2018, 20, 409.
[13] For selected examples on other metal-catalyzed ring cleavage of cyclobutanone oximes, see: (a) Zhao, J.-F.; Guo, P.; Duan, X.-H.; Guo, L.-N. Adv. Synth. Catal. 2018, 360, 1775.
(b) Nishimura, T.; Yoshinaka, T.; Nishiguchi, Y.; Uemura, S. Org. Lett. 2005, 7, 2425.
(c) Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 2000, 122, 12049.
[14] For selected examples on ring cleavage of cyclobutanone oximes via photocatalysis, see: (a) Lu, B.; Cheng, Y.; Chen, L.-Y.; Xiao, W.-J. ACS Catal. 2019, 9, 8159.
(b) Yu, X.-Y.; Chen, J.-R.; Wang, P.-Z.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 738.
(c) He, Y.; Anand, D.; Sun, Z.; Zhou, L. Org. Lett. 2019, 21, 3769.
(d) Li, L.-M.; Chen, H.-G.; Mei, M.-J.; Zhou, L. Chem. Commun. 2017, 53, 11544.
(e) Xia, P.-J.; Ye, Z.-P.; Hu, Y.-Z.; Yang, H. Org. Lett. 2019, 21, 2658.
(f) Zhao, B.; Tan, H. Chen, C.; Jiao, N. Shi, Z.-Z. Chin. J. Chem. 2018, 36, 995.
(g) Zhao, B.-L.; Chen, C.; Lv, J.-H.; Shi, Z.-Z. Org. Chem. Front. 2018, 5, 2719.
(h) Shen, X.; Zhao, J.-J.; Yu, S.-Y. Org. Lett. 2018, 20, 5523.
(i) Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 10707.
(j) Davies, J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2017, 56, 13361.
[15] (a) Zhang, J.-J.; Duan, X.-H.; Wu, Y.; Guo, L.-N. Chem. Sci. 2019, 10, 161.
(b) Yin, Z.-P.; Rabeah, J.; Brückner, A.; Wu, X.-F. Org. Lett. 2019, 21, 1766.
[16] (a) Shang, R.; Ji, D.-S.; Chu, L.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 4470.
(b) Dalziel, M.-E.; Chen, P.-H.; Carrera, D. E.; Gosselin, F. Org. Lett. 2017, 19, 3446.
(c) López, R.; Palomo, C. Angew. Chem., Int. Ed. 2015, 54, 13170.
[17] Yang, H.-B.; Pathipati, S. R.; Selander, N. ACS Catal. 2017, 7, 8441.
[18] Ding, D.; Wang, C. ACS Catal. 2018, 8, 11324.
[19] (a) Chen, Y.-G.; Shuai, B.; Xu, X.-T.; Li, Y.-Q.; Yang, Q.-L.; Qiu, H.; Zhang, K. Fang, P.; Mei, T.-S. J. Am. Chem. Soc. 2019, 141, 3395.
(b) Liu, D.; Ma, H.-X.; Fang, P.; Mei, T.-S. Angew. Chem., Int. Ed. 2019, 58, 5033.
(c) Ma, C.; Zhao, C.-Q.; Xu, X.-T.; Li, Z.-M.; Wang, X.-Y.; Zhang, K.; Mei, T.-S. Org. Lett. 2019, 21, 2464.
(d) Chen, Y.-G.; Shuai, B.; Ma, C.; Zhang, X.-J.; Fang, P.; Mei, T.-S. Org. Lett. 2017, 19, 2969.
[20] During preparing our manuscript, a nickel catalyzed Negishi coupling of oximes using 20% nickel catalyst was recently published: Angelini, L.; Sanz, L. M.; Leonori, D. Synlett 2019, DOI: 10. 1055/s-0039-1690690
[21] (a) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429.
(b) Xu, H.-W.; Diccianni, J. B.; Katigbak, J.; Diao, T.-N. J. Am. Chem. Soc. 2016, 138, 4779.
(c) Schley, N. D.; Fu. G. C. J. Am. Chem. Soc. 2014, 136, 16588.
(d) Phapale, V. B.; Cardenas, D. J. Chem. Soc. Rev. 2009, 38, 1598.
(e) Casares, J. A.; Espinet, P.; Fuentes, B.; Salas, G. J. Am. Chem. Soc. 2007, 129, 3508.
[22]
(f) Anderson, T. J.; Jones, G. D.; Vicic, D. A. J. Am. Chem. Soc. 2004, 126, 8100.
[23] (a) Yin, Z.; Rabeah, J.; Brückner, A.; Wu, X.-F. ACS Catal. 2018, 8, 10926.
(b) Yu, X.-Y.; Chen, J.-R.; Wang, Z.-P.; Yang, M.-N.; Liang, D.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 738.
(c) He, B.-Q.; Yu, X.-Y.; Wang, P.-Z.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2018, 54, 12262.
(d) Wang, P.-Z.; Yu, X.-Y.; Li, C.-Y.; He, B.-Q.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2018, 54, 9925.
(e) Ai, W.; Liu, Y.; Wang, Q.; Lu, Z.; Liu, Q. Org. Lett. 2018, 20, 409.
(f) Nakata, K.; Feng, C.; Tojo, T.; Kobayashi, Y. Tetrahedron Lett. 2014, 55, 5774.
(g) Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. 2011, 13, 1622.
(h) Suga, T.; Shimazu, S.; Ukaji, Y. Org. Lett. 2018, 20, 5389.
(i) Guiard, J.; Rahali, Y.; Praly, J.-P. Eur. J. Org. Chem. 2014, 21, 4461.
(j) Ghosh, A. K.; Martyr, C. D.; Xu, C.-X. Org. Lett. 2012, 14, 2002.
Outlines

/