Base-Promoted, Metal- and Oxidant-Free C=C Bond Cleavage in Enaminones for Ambient Synthesis of NH2-Amidines

  • Wang Guodong ,
  • Guo Yanhui ,
  • Wan Jieping
Expand
  • College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022

Received date: 2019-12-12

  Revised date: 2019-12-16

  Online published: 2019-12-19

Supported by

Project supported by the National Natural Science Foundation of China (No. 21562025).

Abstract

The C=C double bond cleavage of NH2-functionalized enaminones has been realized at room temperature to provide various N-sulfonyl amidines by reacting with sulfonyl azides. The reactions take place with good substrate tolerance in the presence of 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) without any metal or oxidant reagent. The 15N-labelling experiment on enaminone indicates that the sulfonyl azide component donates solely the sulfonamide fragment, and the reaction mechanism involving a key decomposition of the in situ generated 1,2,3-triazoline intermediate is convictively supported.

Cite this article

Wang Guodong , Guo Yanhui , Wan Jieping . Base-Promoted, Metal- and Oxidant-Free C=C Bond Cleavage in Enaminones for Ambient Synthesis of NH2-Amidines[J]. Chinese Journal of Organic Chemistry, 2020 , 40(3) : 645 -650 . DOI: 10.6023/cjoc201912018

References

[1] For selected reviews, see: (a) Kim, D.-S.; Park, W.-J.; Jun, C.-H. Chem. Rev. 2017, 117, 8977.
(b) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410.
(c) Ruhland, K. Eur. J. Org. Chem. 2012, 2683。
(d) Liang, Y.-F.; Jiao, N. Acc. Chem. Res. 2017, 50, 1640.
(e) Wu, X.; Zhu, C. Chem. Rec. 2018, 18, 587.
(f) Wan, J.-P.; Gao, Y.; Wei, L. Chem. Asian J. 2016, 11, 2092.
[2] For selected examples, see: (a) Roque, J. B.; Kuroda, Y.; Göttemann, L. T.; Sarpong, R. Science 2018, 361, 171.
(b) He, C.; Guo, S.; Huang, L.; Lei, A. J. Am. Chem. Soc. 2010, 132, 8273.
(c) Ren, R.; Wu, Z.; Zhu, C. Chem. Commun. 2016, 52, 8160.
(d) Dieskau, A. P.; Holzwarth, M. S.; Plietker, B. J. Am. Chem. Soc. 2012, 134, 5048.
(e) Souillart, L.; Parker, E.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 3001.
[3] For selected reviews in enaminone-based synthesis, see: (a) Fu, L.; Wan, J.-P. Asian J. Org. Chem. 2019, 8, 767.
(b) Wan, J.-P.; Gao, Y. Chem. Rec. 2016, 16, 1164.
(c) Elassar, A.-Z. A.; El-Khair, A. A. Tetrahedron 2003, 59, 8463.
(d) Greenhill, J. V. Chem. Soc. Rev. 1977, 277.
[4] (a) Wasserman, H. H.; Ives, J. L. J. Am. Chem. Soc. 1976, 98, 7868.
(b) Cao, S.; Zhong, S.; Xin, L.; Wan, J.-P.; Wen, C. ChemCatChem 2015, 7, 1478.
(c) Yu, Q.; Zhang, Y.; Wan, J.-P. Green Chem. 2019, 21, 3436.
(d) Wan, J.-P.; Lin, Y.; Cao, X.; Liu, Y.; Wei, L. Chem. Commun. 2016, 52, 1270.
(e) Yang, Y.; Zhong, G.; Fan, J.; Liu, Y. Eur. J. Org. Chem. 2019, 4422.
[5] Gan, L.; Gao, Y.; Wan, J.-P. J. Org. Chem. 2019, 84, 1064.
[6] (a) Zhou, P.; Hu, B.; Li, L.; Rao, K.; Yang, J.; Yu, F. J. Org. Chem. 2017, 82, 13268.
(b) Tian, L.; Guo, Y.; Wei, L.; Wan, J.-P.; Shou, S. Asian J. Org. Chem. 2019, 8, 1484.
(c) Liu, Y.; Xiong, J.; Wei, L.; Wan, J.-P. Adv. Synth. Catal. 2020, 362, 877.
[7] (a) Ni, M.; Zhang, J.; Liang, X.; Jiang, Y.; Loh, T.-P. Chem. Commun. 2017, 53, 12286.
(b) Chen, J.; Guo, P.; Zhang, J.; Rong, J.; Sun, W.; Jiang, Y.; Luo, T.-P. Angew. Chem. Int. Ed. 2019, 58, 12674.
[8] Hu, W.; Zheng, J.; Li, M.; Wu, W.; Liu, H.; Jiang, H. Chin. J. Chem. 2018, 36, 712.
[9] (a) Chang, S.; Lee, M.; Jung, D. Y.; Yoo, E. J.; Cho, S. H.; Han, S. K. J. Am. Chem. Soc. 2006, 128, 12366.
(b) Xu, X.; Li, X.; Ma, L.; Ye, N.; Weng, B. J. Am. Chem. Soc. 2008, 130, 14084.
(c) Ding, R.; Chen, H.; Xu, Y.-L.; Tang, H.-T.; Chen, Y.-M.; Pan, Y.-M. Adv. Synth. Catal. 2019, 361, 3656.
(d) Zheng, X.; Wan, J.-P. Adv. Synth. Catal. 2019, 361, 5690.
[10] Fusco, R.; Bianchetti, G.; Pocar, D.; Ugo, R. Chem. Ber. 1963, 96, 802.
[11] (a) Kato, N.; Hamada, Y.; Shioiri, T. Chem. Pharm. Bull. 1984, 32, 2496.
(b) Gao, T.; Zhao, M.; Meng, X.; Li, C.; Chen, B. Synlett 2011, 1281.
(c) Efimov, I.; Beliaev, N.; Beryozkina, T.; Slepukhin, P.; Bakulev, V. Tetrahedron Lett. 2016, 57, 1949.
(d) Bakulev, V. A.; Beryozkina, T.; Thomas, J.; Dehaen, W. Eur. J. Org. Chem. 2018, 262.
[12] (a) Chandna, N.; Chandak, N.; Kumar, P.; Kapoor, J. K.; Sharma, P. K. Green Chem. 2013, 15, 2294.
(b) Chen, S.; Xu, Y.; Wan, X. Org. Lett. 2011, 13, 6152.
(c) Yang, W.; Huang, D.; Zeng, X.; Luo, D.; Wang, X.; Hu, Y. Chem. Commun. 2018, 54, 8222.
(d) Chen, J.; Long, W.; Fang, S.; Yang, Y.; Wan, X. Chem. Commun. 2017, 53, 13256.
[13] (a) Bae, I.; Han, H.; Chang, S. J. Am. Chem. Soc. 2005, 127, 2038.
(b) Yao, B.; Shen, C.; Liang, Z.; Zhang, Y. J. Org. Chem. 2014, 79, 936.
(c) Murugavel, G.; Punniyamurthy, T. J. Org. Chem. 2015, 80, 6291.
(d) Shang, Y.; He, X.; Hu, J.; Wu, J.; Zhang, M.; Yu, S.; Zhang, Q. Adv. Synth. Catal. 2009, 351, 2709.
[14] (a) van Vliet, K. M.; Polak, L. H.; Siegler, M. A.; van der Vlugt, J. I.; Guerra, C. F.; de Bruin, B. J. Am. Chem. Soc. 2019, 141, 15240.
(b) Liu, B.; Ning, Y.; Virelli, M.; Zanoni, G.; Anderson, E. A.; Bi, X. J. Am. Chem. Soc. 2019, 141, 1593.
[15] (a) Aswad, M.; Chiba, J.; Tomohiro, T.; Hatanaka, Y. Chem. Commun. 2013, 49, 10242.
(b) Hajibabaei, K.; Boeini, H. Synlett 2014, 2044.
[16] For other known methods, see: (a) Mo, D.-L.; Pecak, W. H.; Zhao, M.; Wink, D. J.; Anderson, L. L. Org. Lett. 2014, 16, 3696.
(b) Zhou, M.; Li, J.; Tian, C.; Sun, X.; Zhu, X.; Cheng, Y.; An, G.; Li, G. J. Org. Chem. 2019, 84, 1015.
(c) Kim, J.; Stahl, S. S. J. Org. Chem. 2015, 80, 2448.
[17] Yi, F.; Sun, Q.; Sun, J.; Fu, C.; Yi, W. J. Org. Chem. 2019, 84, 6780.
[18] (a) Shang, Z.; Chen, Q.; Xing, L.; Zhang, Y.; Wait, L.; Du, Y. Adv. Synth. Catal. 2019, 361, 4926.
(b) Wu, M.; Jiang, Y.; An, Z.; Qi, Z.; Yan, R. Adv. Synth. Catal. 2018, 360, 4236.
(c) Guo, Y.; Xiang, Y.; Wei, L.; Wan, J.-P. Org. Lett. 2018, 20, 3971.
(d) Wan, J.-P.; Cao, S.; Liu, Y. Org. Lett. 2016, 18, 6034.
(e) Cheng, D.; Deng, Z.; Yan, X.; Wang, M.; Xu, X.; Yan, J. Adv. Synth. Catal. 2019, 361, 5025.
(f) Wan, J.-P.; Tu, Z.; Wang, Y. Chem.-Eur. J. 2019, 25, 6907.
(g) Luo, T.; Xu, H.; Liu, Y. ChemistrySelect 2019, 4, 10621.
(h) Yang, L.; Wei, L.; Wan, J.-P. Chem. Commun. 2018, 54, 7475.
(i) Yan, R.; Li, X.; Yang, X.; Kang, X.; Xiang, L.; Huang, G. Chem. Commun. 2015, 51, 2573.
(j) Zhao, Q.; Xiang, H.; Xiao, J.-A.; Xia, P.-J.; Wang, J.-J.; Chen, X.; Yang, H. J. Org. Chem. 2017, 82, 9837.
(k) Bai F.; Hu, D.; Liu, Y.; Wei, L. Chin. J. Org. Chem. 2018, 38, 2054(in Chinese). (白飞成, 胡德庆, 刘云云, 韦丽, 有机化学, 2018, 38, 2054.)
(l) Fu, L.; Cao, X.; Wan, J.-P.; Liu, Y. Chin. J. Chem. 2020, 38, 254.
[19] (a) Xie, L.-Y.; Fang, T.-G.; Tan, J.-X.; Bang, B.; Cao, Z.; Yang, L.-H.; He, W.-M. Green Chem. 2019, 21, 3858.
(b) Wan, J.-P.; Zhong, S.; Guo, Y.; Wei, L. Eur. J. Org. Chem. 2017, 4401.
(c) Yu, H.; Bao, P.; Wang, L.; Lv, X.; Yang, D.; Wang, H.; Wei, W. Chin. J. Org. Chem. 2019, 39, 463(in Chinese). (岳会兰, 鲍鹏丽, 王雷雷, 吕晓霞, 杨道山, 王桦, 魏伟, 有机化学, 2019, 39, 463.)
(d) Du, Y.; Wei, L.; Liu, Y. Heteroatom Chem. 2017, 28, e21401.
(e) Dong, D.; Chen, W.; Chen, D.; Li, L.; Li, G.; Wang, Z.; Deng, Q.; Long, S. Chin. J. Org. Chem. 2019, 39, 3190(in Chinese). (董道青, 陈文静, 陈德茂, 李丽霞, 李光辉, 王祖利, 邓企, 龙姝, 有机化学, 2019, 39, 3190.)
[20] Zhu, Z.; Tang, X.; Li, J.; Li, X.; Wu, W.; Deng, G.; Jiang, H. Chem. Commun. 2017, 53, 3228.
[21] Chandna, N.; Kaur, F.; Kumar, S.; Jain, N. Green Chem. 2017, 19, 4268.
[22] Baeten, M.; Maes, B. U. W. Adv. Synth. Catal. 2016, 358, 826.
Outlines

/