Synthesis of α,α,γ,γ-Tetrafluoro-β-hydroxy Ketones and α-Fluoroacetophenones via 1,3-Diaryl-1,3-diketones

  • Bao Kun ,
  • Wei Jun ,
  • Sheng Rong
Expand
  • a Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014;
    b College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058

Received date: 2019-10-11

  Revised date: 2019-12-07

  Online published: 2019-12-27

Abstract

α,α,γ,γ-Tetrafluoro-β-hydroxy ketones and α-fluoroacetophenones are widely used in the fields of organic chemistry, agrochemicals, and pharmaceuticals. A mild and excellent method to synthesize α,α,γ,γ-tetrafluoro-β-hydroxy ketones and α-fluoroacetophenones via various 1,3-diaryl-1,3-diketones has been developed. With the modification of reaction conditions, two different products could be obtained in moderate to good yields, respectively.

Cite this article

Bao Kun , Wei Jun , Sheng Rong . Synthesis of α,α,γ,γ-Tetrafluoro-β-hydroxy Ketones and α-Fluoroacetophenones via 1,3-Diaryl-1,3-diketones[J]. Chinese Journal of Organic Chemistry, 2020 , 40(4) : 930 -937 . DOI: 10.6023/cjoc201910014

References

[1] (a) Fujiwara, T.; O'Hagan D. J. Fluorine Chem. 2014, 167, 16.
(b) Ghosh, K.-G.; Chandu, P.; Mondal, S.; Sureshkumar, D. Tetrahedron 2019, 75, 4471.
(c) Wei, J.; Gu, D.-Y.; Wang, S.-D.; Hu, J.-B.; Dong, X.-W.; Sheng, R. Org. Chem. Front. 2018, 5, 2568.
(d) Cloutier, M.; Roudias, M.; Paquin, J.-F. Org. Lett. 2019, 21, 3866.
[2] (a) Gillis, E.-P.; Eastman, K.-J.; Hill, M.-D.; Donnelly, D.-J.; Meanwell, N.-A. J. Med. Chem. 2015, 58, 8315.
(b) Vogt, D.-B.; Seath, C.-P.; Wang, H.; Jui, N.-T. J. Am. Chem. Soc. 2019, 141, 13203.
(c) Guan, Z.-P.; Wang, H.-M.; Huang, Y.-G.; Wang, Y.-K.; Wang, S.-C.; Lei, A.-W. Org. Lett. 2019, 21, 4619.
[3] St-Gelais, J.; Bouchard, M.; Denavit, V.; Giguere, D. J. Org. Chem. 2019, 84, 8509.
[4] (a) Liu, C.-Z.; Wang, H.; Zhang, D.-W.; Zhao, X.; Li, Z.-T. Chin. J. Org. Chem. 2019, 39, 28(in Chinese). (刘传志, 王辉, 张丹维, 赵新, 黎占亭, 有机化学, 2019, 39, 28.)
(b) Hu, J. B.; Ding, K.-L. Acta Chim. Sinica 2018, 76, 905(in Chinese). (胡金波, 丁奎岭, 化学学报, 2018, 76, 905.)
[5] (a) D'Errico, S.; Oliviero, G.; Borbone, N.; Amato, J.; D'Alonzo, D.; Piccialli, V.; Mayol, L.; Piccialli, G. Molecules 2012, 17, 13036.
(b) D'Errico, S.; Oliviero, G.; Piccialli, V.; Amato, J.; Borbone, N.; D'Atri, V.; D'Alessio, F.; Di Noto, R.; Ruffo, F.; Salvatore, F.; Piccialli, G. Bioorg. Med. Chem. Lett. 2011, 21, 5835.
(c) Naveen, N.; Balamurugan, R. Org. Biomol. Chem. 2017, 15, 2063.
[6] (a) Yang, Q.; Mao, L.-L.; Yang, B.; Yang, S.-D. Org. Lett. 2014, 16, 3460.
(b) Purser, S.; Moore, P.-R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(c) Zhang, P.; Wolf, C. J. Org. Chem. 2012, 77, 8840.
[7] (a) He, Z.; Qi, X.-T.; She, Z.-J.; Zhao, Y.-S.; Li, S.-Q.; Tang, J.-B.; Gao, G.; Lan, Y.; You, J.-S. J. Org. Chem. 2017, 82, 1403.
(b) Bartlett, S.-L.; Beaudry, C.-M. J. Org. Chem. 2011, 76, 9852.
[8] Kuang, J.-Q.; Zhou, T.; You, T.-J.; Chen, J.-H.; Su, C.-L.; Xia, Y.-Z. Org. Biomol. Chem. 2019, 17, 3940.
[9] Chen, Y.-Z.; Zhu, J.; Wu, J.-J.; Wu, L. Org. Biomol. Chem. 2018, 16, 6675.
[10] Han, J.-L.; Liao, Y.-T. Chang, C.-H. Eur. J. Org. Chem. 2019, 33, 5815.
[11] Crosignani, S.; Linclau, B. J. Gen. Virol. 2006, 2, 129.
[12] Tang, L.; Yang, Z.; Jiao, J.-C.; Cui, Y.; Zou, G.-D.; Zhou, Y.-Q.; Rao, W.-H.; Ma, X.-T. J. Org. Chem. 2019, 84, 10449.
[13] Wang, R.; Han, J.; Li, C.-C.; Zhang, J.; Liang, Y.; Wang, T.; Zhang, Z.-T. Org. Biomol. Chem. 2018, 16, 2479.
[14] (a) Lin, Y.-M.; Yi, W.-B.; Shen, W.-Z.; Lu, G.-P. Org. Lett. 2016, 18, 592.
(b) Qian, J.-L.; Yi, W.-B.; Huang, X.; Jasinski, J.-P.; Zhang, W. Adv. Synth. Catal. 2016, 358, 2811.
(c) Yi, W.-B.; Qian, J.-L.; Lv, M.-F.; Cai, C. Synlett 2014, 26, 127.
[15] Howard, J.-L.; Brand, M.-C.; Browne, D.-L. Angew. Chem., Int. Ed. 2018, 57, 16104.
[16] (a) He, Y.; Zhang, X.-Y.; Shen, N.-N.; Fan, X.-S. J. Fluorine Chem. 2013, 156, 9.
(b) Li, J.; Li, Y.-L.; Jin, N.; Ma, A.-L.; Huang, Y.-N.; Deng, J. Adv. Synth. Catal. 2015, 357, 2474.
(c) Wu, S.-W.; Liu, F. Org. Lett. 2016, 18, 3642.
[17] (a) He, Y.; Zhang, X.-Y.; Shen, N.-N.; Fan, X.-S. J. Fluorine Chem. 2013, 156, 9.
(b) Singh, R.-P.; Martin, J.-L. J. Fluorine Chem. 2016, 181, 7.
[18] (a) Barnette, W.-E. J. Am. Chem. Soc. 1984, 106, 452.
(b) Fuglseth, E.; Thvedt, T.-H.-K.; Moll, M.-F.; Hoff, B.-H. Tetrahedron 2008, 64, 7318.
(c) Kwiatkowski, P.; Beeson, T.-D.; Conrad, J.-C.; MacMillan, D.-W.-C. J. Am. Chem. Soc. 2011, 133, 1738.
[19] (a) Wagner, P.-J.; Thomas, M.-J.; Puchalski, A.-E. J. Am. Chem. Soc. 1986, 108, 7739.
(b) Makosza, M.; Bujok, R. Tetrahedron Lett. 2004, 45, 1385.
[20] Zhang, R.; Ni, C.-F.; He, Z.-B.; Hu, J.-B. J. Fluorine Chem. 2017, 203, 166.
[21] (a) Martinez-Haya, R.; Marzo, L.; Konig, B. Chem. Commun (Camb) 2018, 54, 11602.
(b) Leng, D.-J.; Black, C.-M.; Pattison, G. Org. Biomol. Chem. 2016, 14, 1531.
[22] Li, J.; Li, Y.-L.; Jin, N.; Ma, A.-L.; Huang, Y.-N.; Deng, J. Adv. Synth. Catal. 2015, 357, 2474.
[23] Chen, Z.; Zhu, W.; Zheng, Z.-B.; Zou, X.-Z. J. Fluorine Chem. 2010, 131, 340.
[24] He, Y.; Zhang, X.-Y.; Shen, N.-N.; Fan, X.-S. J. Fluorine Chem. 2013, 156, 9.
[25] Krane Thvedt, T.-H.; Fuglseth, E.; Sundby, E.; Hoff, B.-H. Tetrahedron 2009, 65, 9550.
[26] Fuglseth, E.; Thvedt, T.-H.-K.; Møll, M.-F.; Hoff, B.-H. Tetrahedron 2008, 64, 7318.
Outlines

/