Microwave-Assisted Iodine-Catalyzed 3-Selenocyanation of Indole for the Synthesis of 3-Selenocyanateindole Derivatives

  • Wu Yan ,
  • Tian Xianzhi ,
  • Zhang Hailing ,
  • Chen Rui ,
  • Cao Tuanwu
Expand
  • Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408000

Received date: 2019-10-06

  Revised date: 2019-12-03

  Online published: 2020-01-03

Supported by

Project supported by the Basic and Frontier Research Project of Chongqing City (Nos. Cstc2018jcyjAX0721, Cstc2016jcyjA0056), the Youth Talent Growth Plan Project of Yangtze Normal University (No. 2018QNRC11), and the Education Commission of Chongqing City (No. KJQN201801404).

Abstract

3-Selenocyanateindole derivatives have potential application in drug research due to their good biological activity. Until now, many methods for the synthesis of 3-selenocyanateindoles have been reported. However, drawbacks still exist, such as harsh reaction conditions, low yields and poor functional groups tolerance. A series of 3-selenocyanateindoles have been synthesized via the microwave-assisted 3-selenocyanation of indole derivatives by using 25 mol% iodine as catalyst, affording the corresponding products in good yields. Compared with the previous methods, this protocol has the advantages of rapid reaction, high yields and good atomic economy, providing an efficient route to 3-selenocyanateindole derivatives.

Cite this article

Wu Yan , Tian Xianzhi , Zhang Hailing , Chen Rui , Cao Tuanwu . Microwave-Assisted Iodine-Catalyzed 3-Selenocyanation of Indole for the Synthesis of 3-Selenocyanateindole Derivatives[J]. Chinese Journal of Organic Chemistry, 2020 , 40(5) : 1384 -1387 . DOI: 10.6023/cjoc201910003

References

[1] Li, Y.; Chen, S.; Su, L.; Li, J. Chin. J. Org. Chem. 2013, 33, 1999(in Chinese). (李媛媛, 陈四海, 苏柳, 李建华, 有机化学, 2013, 33, 1999.)
[2] Turner, D. C.; Stadtman, T. C. Arch. Biochem. Biophys. 1973, 25, 187.
[3] Zhou, F.; Yang, W.; Wang, M.; Miao, Y.; Cui, Z.; Li, Z.; Liang, D. Food Chem. 2018, 265, 182.
[4] Wang, X.; Li, Z.; Zhang, W.; Wang, X.; Chen, J.; Li, N.; Qiu, R.; Xu. X. Chin. J. Org. Chem. 2013, 33, 558(in Chinese). (王小勇, 李治章, 张卫军, 王勰, 陈锦杨, 李宁波, 邱仁华, 许新华, 有机化学, 2013, 33, 558.)
[5] Reich, H. J.; Renga, J. M.; Reich, I. L. J. Am. Chem. Soc. 1975, 97, 19.
[6] Reich, H. J.; Reich, I. L.; Renga, J. M. J. Am. Chem. Soc. 1973, 95, 17.
[7] Liu, W.; Yin, X.; Zang, Z.; Yu, X.; Tao, L.; Li, Y.; Xu, X. Chin. J. Org. Chem. 2009, 29, 2021(in Chinese). (刘文奇, 尹显洪, 臧中林, 余晓芬, 陶李明, 李言杰, 许新华, 有机化学, 2009, 29, 2021.)
[8] Reich, H. J. Chem. Rev. 2013, 113, 7130.
[9] Lu, L-H.; Wang, Z.; Xia, W.; Cheng, P.; Zhang, B.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2019, 30, 1237.
[10] Kolonko, K. J.; Guzei, I. A.; Reich, H. J. J. Org. Chem. 2010, 75, 6163.
[11] Wang, F.; Xu, L.; Sun, C.; Xu, Q.; Huang, J. Yu, L. Chin. J. Org. Chem. 2017, 37, 2115(in Chinese). (王芳, 徐林, 孙诚, 徐清, 黄杰军, 俞磊, 有机化学, 2017, 37, 2115.)
[12] Mukherjee, A. J.; Zade, S. S.; Singh, H. B.; Sunoj, R. B. Chem. Rev. 2010, 110, 4357.
[13] Quatrin, P. M.; Dalla, L.; Daiane, F.; Bazana, L. C. G.; de Oliveira, L. F. S.; Lettieri, T. M.; Silva, E. E.; Lopes, W.; Canto, R. F. S.; Silveira, G. P.; Fuentefria, A. M. New J. Chem. 2019, 43, 926.
[14] Guan, Q.; Han, C.; Zuo, D.; Zhai, M.; Li, Z.; Zhang, Q.; Zhai, Y.; Jiang, X.; Bao, K.; Wu, Y.; Zhang, W. Eur. J. Med. Chem. 2014, 87, 306.
[15] Muniraj, N.; Dhineshkumar, J.; Prabhu, K. R. ChemistrySelect 2016, 1, 1033.
[16] Wang, X.; Mu, S.; Sun, T.; Sun, K. Chin. J. Org. Chem. 2019, 39, 2808(in Chinese). (王薪, 穆石强, 孙婷, 孙凯, 有机化学, 2019, 39, 2808.)
[17] Abonia, R.; Gutierrez, L. F.; Zwarycz, A. T.; Smits, S. C.; Laali, K. K. Heteroat. Chem. 2019, 1459681.
[18] Feng, C.; Peng, Y.; Ding, G.; Li, X.; Cui, C.; Yan, Y. Chem. Commun. 2018, 54, 13367.
[19] Nair, V.; Augustine, A.; George, T. G. Eur. J. Org. Chem. 2002, 14, 2363.
[20] Kachanov, A. V.; Slabko, O. Y.; Baranova, O. V.; Shilova, E. V.; Kaminskii, V. A. Tetrahedron Lett. 2004, 45, 4461.
[21] Zhang, X.; Wang, C.; Jiang, H.; Sun, L. RSC Adv. 2018, 8, 22042.
[22] Liang, L.; Li, J.; Zhang, Q.; Ma, H. Chin. J. Org. Chem. 2019, 39, 1323(in Chinese). (梁玲, 牟佳玲, 陈悦, 王梦莎, 洪志, 有机化学, 2019, 39, 1323.)
[23] Meng, G.; Mou, J.; Chen, R.; Wang, M.; Hong, Z. Chin. J. Org. Chem. 2012, 32, 2378(in Chinese). (孟光荣, 李嘉俊, 张倩, 马红梅, 有机化学, 2012, 32, 2378.)
[24] Arvela, R. K.; Leadbeater, N. E. Org. Lett. 2005, 7, 2101.
[25] Anderson, K. W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2005, 44, 6173.
[26] Wang, C.; Mu, C.; Xiang, J.; Wang, B.; Zhang, C.; Song, J.; Wen, F. Chin. J. Chem. 2018, 36, 157.
[27] Li, X.; Wang, W.; Li, R.; Zhang, P.; Chen, H. Chin. J. Org. Chem. 2012, 32, 1519(in Chinese). (李小六, 王玮, 李锐, 张平竹, 陈华, 有机化学, 2012, 32, 1519.)
[28] Kokel, A.; Schäfer, C.; Török, B. Green Chem. 2017, 19, 3729.
[29] Fan, W.; Yang, Z.; Jiang, B.; Li G. Org. Chem. Front. 2017, 4, 1091.
[30] Liu, C.-R.; Ding, L.-H. Org. Biomol. Chem. 2015, 13, 2251.
Outlines

/