Progress in Catalysis of Hydrosilylation by Cobalt Complexes

  • Dai Zinan ,
  • Yu Zehao ,
  • Bai Ying ,
  • Li Jiayun ,
  • Peng Jiajian
Expand
  • Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121

Received date: 2019-10-11

  Revised date: 2019-12-06

  Online published: 2020-01-03

Supported by

Project supported by the Natural Science Foundation of Zhejiang Province (No. LY18B020012).

Abstract

Cobalt is abound in the earth and has advantages of low cost and low toxicity. Cobalt complexes have been widely applied as catalysts in numerous catalytic organic reactions, in which the complexes show excellent catalytic performance and have been recognized as a very important research field. The recent progress in the application of cobalt complexes in the catalytic hydrosilylation of alkenes, alkynes, carbonyl compounds and other unsaturated double bond is summarized. Furthermore, the deficiencies of the catalysts have been discussed. At last, the future development and prospects of these complexes as catalysts are also proposed.

Cite this article

Dai Zinan , Yu Zehao , Bai Ying , Li Jiayun , Peng Jiajian . Progress in Catalysis of Hydrosilylation by Cobalt Complexes[J]. Chinese Journal of Organic Chemistry, 2020 , 40(5) : 1177 -1187 . DOI: 10.6023/cjoc201910012

References

[1] Marciniec, B.; Gulinski, J.; Urbaniak, W.; Kornetka, Z. W. In Comprehensive Handbook on Hydrosilylation, Pergamon, Oxford, U. K., 1992.
[2] Ojima, I. In the Chemistry of Organic Silicon Compounds, Vol. 1, Wiley, Chichester, U. K., 1989, Chapter 25.
[3] Roy, A. K. Adv. Organomet. Chem. 2007, 55, 1.
[4] Speier, J. L.; Webster, J. A.; Barnes, G. H. J. Am. Chem. Soc. 1957, 79, 974.
[5] Karstedt, B. D. US 3775452, 1973.
[6] Dong, H.; Berke, H. Adv. Synth. Catal. 2009, 351, 1783.
[7] Ojima, I.; Kogure, T.; Nagai, Y. Tetrahedron Lett. 1974, 15, 1889.
[8] Brunner, H.; Becker, R.; Riepl, G. Organometallics 1984, 3, 1354.
[9] Zhang, Q.; Liu, A.; Yu, H.; Fu, Y. Acta Chim. Sinica 2018, 76, 113(in Chinese). (张琪, 刘奥, 于海珠, 傅尧, 化学学报, 2018, 76, 113.)
[10] Yang, X.; Wang, C. Chin. J. Chem. 2018, 36, 1047.
[11] Harrod, J. F.; Chalk, A. J. J. Am. Chem. Soc. 1965, 87, 1133.
[12] Sun, J.; Deng, L. ACS Catal. 2016, 6, 290.
[13] Du, X.; Huang, Z. ACS Catal. 2017, 7, 1227.
[14] Obligacion, J. V.; Chirik, P. J. Nat. Rev. Chem. 2018, 2, 15.
[15] Chen, J.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075.
[16] Chen, J.; Lu, Z. Org. Chem. Front. 2018, 5, 260.
[17] Zaranek, M.; Pawluc, P. ACS Catal. 2018, 8, 9865.
[18] Magomedov, G. K. I.; Andrianov, K. A.; Shkolnik, O. V.; Izmailov, B. A.; Kalinin, V. N. J. Organomet. Chem. 1978, 149, 29.
[19] Brookhart, M.; Grant, B. E. J. Am. Chem. Soc. 1993, 115, 2151.
[20] Mo, Z.; Liu, Y.; Deng, L. Angew. Chem., Int. Ed. 2013, 52, 10845.
[21] Liu, Y.; Deng, L. J. Am. Chem. Soc. 2017, 139, 1798.
[22] Gao, Y.; Wang, L.; Deng, L. ACS Catal. 2018, 8, 9637.
[23] Chen, C.; Hecht, M. B.; Kavara, A.; Brennessel, W. W.; Mercado, B. Q.; Weix, D. J.; Holland, P. L. J. Am. Chem. Soc. 2015, 137, 13244.
[24] Ibrahim, A. D.; Entsminger, S. W.; Zhu, L.; Fout, A. R. ACS Catal. 2016, 6, 3589.
[25] Gorczyński, A.; Zaranek, M.; Witomska, S.; Bocian, A.; Stefankiewicz, A. R.; Kubicki, M.; Patroniak, V.; Pawluć, P. Catal. Commun. 2016, 78, 71.
[26] Raya, B.; Biswas, S.; Rajanbabu, T. V. ACS Catal. 2016, 6, 6318.
[27] Raya, B.; Jing, S.; Balasanthiran, V.; RajanBabu, T. V. ACS Catal. 2017, 7, 2275.
[28] Schuster, C. H.; Diao, T.; Pappas, I.; Chirik, P. J. ACS Catal. 2016, 6, 2632.
[29] Wang, C.; Teo, W. J.; Ge, S. ACS Catal. 2017, 7, 855.
[30] Lee, K. L. Angew. Chem., Int. Ed. 2017, 56, 3665.
[31] Cheng, B.; Lu, P.; Zhang, H.; Cheng, X.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 9439.
[32] Cheng, B.; Lu, P.; Zhao, J.; Lu, Z. Chin. J. Org. Chem. 2019, 39, 1704(in Chinese). (程彪, 陆鹏, 赵家金, 陆展, 有机化学, 2019, 39, 1704.)
[33] Wen, H.; Wang, K.; Zhang, Y.; Liu, G.; Huang, Z. ACS Catal. 2019, 9, 1612.
[34] Mo, Z.; Xiao, J.; Gao, Y.; Deng, L. J. Am. Chem. Soc. 2014, 136, 17414.
[35] Zuo, Z.; Yang, J.; Huang, Z. Angew. Chem. 2016, 128, 10997.
[36] Wen, H.; Wan, X.; Huang, Z. Angew. Chem., Int. Ed. 2018, 57, 6319.
[37] Xi, T.; Lu, Z. J. Org. Chem. 2016, 81, 8858.
[38] Guo, J.; Lu, Z. Angew. Chem. 2016, 128, 10993.
[39] Guo, J.; Shen, X.; Lu, Z. Angew. Chem. 2017, 129, 630.
[40] Cheng, Z.; Xing, S.; Guo, J.; Cheng, B.; Hu, L.; Zhang, X.; Lu, Z. Chin. J. Chem. 2019, 37, 457.
[41] Cheng, Z. Chin. J. Chem. 2019, 37, 632.
[42] Guo, J.; Wang, H.; Xing, S.; Hong, X.; Lu, Z. Chem 2019, 5, 881.
[43] Teo, W. J.; Wang, C.; Tan, Y. W.; Ge, S. Angew. Chem., Int. Ed. 2017, 56, 4328.
[44] Wu, C.; Teo, W. J.; Ge, S. ACS Catal. 2018, 8, 5896.
[45] Sang, H.; Hu, Y.; Ge, S. Org. Lett. 2019, 21, 5234.
[46] Zhang, S.; Ibrahim, J. J.; Yang, Y. Org. Lett. 2018, 20, 6265.
[47] Zong, Z.; Yu, Q.; Sun, N.; Hu, B.; Shen, Z.; Hu, X.; Jin, L. Org. Lett. 2019, 21, 5767.
[48] Kong, D.; Hu, B.; Chen, D. Chem.-Asian J. 2019, 14, 2694.
[49] Inagaki, T.; Phong, L.T.; Furuta, A.; Ito, J.; Nishiyama, H. Chem.-Eur. J. 2010, 16, 3090.
[50] Sauer, D. C.; Wadepohl, H.; Gade, L. H. Inorg. Chem. 2012, 51, 12948.
[51] Niu, Q.; Sun, H.; Li, X.; Klein, H. F.; Flork, U. Organometallics 2013, 32, 5235.
[52] Zhou, H.; Sun, H.; Zhang, S.; Li, X. Organometallics 2015, 34, 1479.
[53] Chen, X.; Lu, Z. Org. Lett. 2016, 18, 4658.
[54] Yang, F.; Wang, Y.; Lu, F.; Xie, S.; Qi, X.; Sun, H.; Li, X.; Fuhr, O.; Fenske, D. New J. Chem. 2018, 42, 15578.
Outlines

/