Recent Advancement in Benzofulvene Synthesis

  • Shi Chuanxing ,
  • Feng Chenguo ,
  • Chen Yali ,
  • Zhang Shusheng ,
  • Lin Guoqiang
Expand
  • a College of Sciences, Shanghai University, Shanghai 200444;
    b CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    c Innovation Research Instutute of Tranditional Chinese Medicine, Shanghai University of Tranditional Chinese Medicine, Shanghai 201203

Received date: 2019-10-25

  Revised date: 2019-12-17

  Online published: 2020-01-03

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21572253, 21772216), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB 20020100), and the Key Research Program of Frontier Science (No. QYZDY-SSWSLH026).

Abstract

Benzofulvenes were widely found in natural products and bioactive molecules, and also served as important building blocks in material science and transition-metal chemistry. Great efforts have been devoted to the efficient synthesis of these interesting molecules, and rapid advancement has been made in the past two decades. According to the types of the initiation of the reaction, these methods can roughly be classified into five categories:thermal or photochemical cyclization of enyne-al-lenes or enediynes, transition metal-catalyzed sequential cyclization reaction, electrophilic or nucleophilic attack initiated cyclization, radical initiated cyclization and acid promoted cyclization. This review describes the important synthetic methods of benzofulvenes according to their reaction types.

Cite this article

Shi Chuanxing , Feng Chenguo , Chen Yali , Zhang Shusheng , Lin Guoqiang . Recent Advancement in Benzofulvene Synthesis[J]. Chinese Journal of Organic Chemistry, 2020 , 40(4) : 817 -830 . DOI: 10.6023/cjoc201910029

References

[1] Thiele, J. Chem. Ber. 1900, 33, 666.
[2] Yates, P. V. Adv. Alicyclic Chem. 1968, 2, 59.
[3] Simple examples for application, see:(a) Kosaka, Y.; Kitazawa, K.; Inomata, S.; Ishizone, T. ACS Macro Lett. 2013, 2, 164.
(b) Cappelli, A.; Galeazzi, S.; Giuliani, G.; Anzini, M.; Grassi, M.; Lapasin, R.; Grassi, G.; Farra, R.; Dapas, B.; Aggravi, M.; Donati, A.; Zetta, L.; Boccia, A. C.; Bertini, F.; Samperi, F.; Vomero, S. Macromolecules 2009, 42, 2368.
[4] (a) Douglas, A. W.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. Tetrahedron Lett. 1995, 36, 3993.
(b) Shanmugam P.; Rajasingh, P. Chem. Lett. 2005, 34, 1494.
[5] (a) Walters, M. J.; Blobaum, A. L.; Kingsley, P. J.; Felts, A. S.; Sulikowski, G. A.; Marnett, L. J. Bioorg. Med. Chem. Lett. 2009, 19, 3271.
(b) Felts, A. S.; Siegel, B. S.; Young, S. M.; Moth, C. W.; Lybrand, T. P.; Dannenberg, A. J.; Marnett, L. J.; Subbaramaiah, K. J. Med. Chem. 2008, 51, 4911.
(c) Korte, A.; Legros, J.; Bolm, C. Synlett 2004, 2397.
(d) Maguire, A. R.; Papot, S.; Ford, A.; Touhey, S.; O'Connor, R.; Clynes, M. Synlett 2001, 41.
[6] (a) Snyder, S. A.; Zografos, A. L.; Lin, Y. Angew. Chem., Int. Ed. 2007, 46, 8186.
(b) Jeffrey, J. L.; Sarpong, R. Tetrahedron Lett. 2009, 50, 1969.
(c) Singer, R. A.; McKinley, J. D.; Barbe, G.; Farlow, R. A. Org. Lett. 2004, 6, 2357.
[7] (a) Cappelli, A.; Galeazzi, S.; Giuliani, G.; Anzini, M.; Donati, A.; Zetta, L.; Mendichi, R.; Aggravi, M.; Giorgi, G.; Paccagnini, E.; Vomero, S. Macromolecules 2007, 40, 3005.
(b) Cappelli, A.; Galeazzi, S.; Giuliani, G.; Anzini, M.; Grassi, M.; Lapasin, R.; Grassi, G.; Farra, R.; Dapas, B.; Aggravi, M.; Donati, A.; Zetta, L.; Boccia, A. C.; Bertini, F.; Samperi, F.; Vomero, S. Macromolecules 2009, 42, 2368.
(c) Cappelli, A.; Paolino, M.; Grisci, G.; Giuliani, G.; Donati, A.; Mendichi, R.; Boccia, A. C.; Botta, C.; Mroz, W.; Samperi, F.; Scamporrino, A.; Giorgi, G.; Vomero, S. J. Mater. Chem. 2012, 22, 9611.
(d) Kosaka, Y.; Kitazawa, K.; Inomata, S.; Ishizone, T. ACS Macro Lett. 2013, 2, 164.
(e) Cappelli, A.; Villafiorita-Monteleone, F.; Grisci, G.; Paolino, M.; Razzano, V.; Fabio, G.; Giuliani, G.; Donati, A.; Mendichi, R.; Boccia, A. C.; Pasini, M.; Botta, C. J. Mater. Chem. C 2014, 2, 7897.
(f) Cappelli, A.; Razzano, V.; Paolino, M.; Grisci, G.; Giuliani, G.; Donati, A.; Mendichi, R.; Samperi, F.; Battiato, S.; Boccia, A. C.; Mura, A.; Bongiovanni, G.; Mroz, W.; Botta, C. Polym. Chem. 2015, 6, 7377.
(g) Kosaka, Y.; Kawauchi, S.; Goseki, R.; Ishizone, T. Macro-molecules 2015, 48, 4421.
(h) Wang, W.; Schlegel, R.; White, B. T.; Williams, K.; Voyloy, D.; Steren, C. A.; Goodwin, A.; Coughlin, E. B.; Gido, S.; Beiner, M.; Hong, K.; Kang, N.-G.; Mays, J. Macromolecules 2016, 49, 2646.
(i) Chen. S.-D.; Li, Q.-P.; Sun, S.-Y.; Ding, Y.; Hu, A.-H. Macromolecules 2017, 50, 534.
[8] (a) Fischer, M.; Oswald, T.; Ebert, H.; Schmidtmann, M.; Beckhaus, R. Organometallics 2018, 37, 415.
(b) Rogers, J. S.; Lachicotte, R. J.; Bazan, G. C. Organometallics 1999, 18, 3976.
[9] Habaue, S.; Sakamoto, H.; Okamoto, Y. Polym. J. 1997, 29, 384.
[10] Jaquith, J. B.; Guan, J.; Wang, S.; Collins, S. Organometallics 1995, 14, 1079.
[11] Yuki, K.; Susumu, K.; Raita, K.; Takashi, I. Macromolecules 2015, 48, 4421.
[12] Grissom, J. W.; Gunawardena, G. U.; Klingberg, D.; Huang, D. Tetrahedron 1996, 52, 6453.
[13] (a) Mers, A. G.; Kuo, E. Y.; Finney, N. S. J. Am. Chem. Soc. 1989, 111, 8057.
(b) Nagata, R.; Yamanaka, H.; Okazaki, E.; Saito, I. Tetrahedron Lett. 1989, 30, 4995.
[14] Matthias, P.; Alexander, W.; Peter, R. S. J. Phys. Chem. A 2001, 105, 9265.
[15] Schmittel, M.; Strittmatter, M.; Kiau, S. Tetrahedron Lett. 1995, 36, 4975.
[16] Schmittel, M.; Kiau, S.; Siebert, T.; Strittmatter, M. Tetrahedron Lett. 1996, 37, 7691.
(b) Schmittel, M.; Maywald, M.; Strittmatter, M. Synlett 1997, 165.
[17] Igor, V. A.; Serguei, V. K. J. Am. Chem. Soc. 2002, 124, 9052
[18] Schmittel, M.; Mahajan, A. A.; Bucher, G.; Bats, J. W. J. Org. Chem. 2007, 72, 2166.
[19] Vavilala, C.; Byrne, N.; Kraml, C. M.; Douglas, M.; Pascal, J. R. J. Am. Chem. Soc. 2008, 130, 13549.
[20] Bucher, G.; Mahajan, A.; Schmittel, M. J. Org. Chem. 2008, 73, 8815.
[21] Tsuchikama, K.; Kasagawa, M.; Hashimoto, Y.; Endo, K.; Shibata, T. J. Organomet. Chem. 2008, 693, 3939.
[22] Tsuchikama, K.; Kasagawa, M.; Endo, K.; Shibata, T. Synlett 2010, 1, 97.
[23] Patureau, F, W.; Besset, T.; Kuhl, T.; Glorius, J. F. J. Am. Chem. Soc. 2011, 133, 2154.
[24] (a) Chinnagolla, R. K.; Jeganmohan, M. Eur. J. Org. Chem. 2012, 417.
(b) Yu, Y.; Wu, Q.; Liu, D.; Hu, L.; Yu, L.; Tan, Z.; Zhu, G. J. Org. Chem. 2019, 84, 7449.
[25] Guo, B.; Zheng, L.Y.; Zheng, Z. L.; Hua, R. M. J. Org. Chem. 2015, 80, 8430.
[26] Raju, S.; Hsiao, H.-C.; Thirupathi, S.; Chen, P.-L.; Chuang, S.-C. Adv. Synth. Catal. 2019, 361, 683.
[27] Dyker, G.; Nerenz, F.; Siemsen, P.; Bubenitschek, P.; Jones, P. G. Chem. Ber. 1996, 1265.
[28] Singer, R. A.; McKinley, J. D.; Barbe, G.; Farlow, R. A. Org. Lett. 2004, 6, 2357.
[29] Furuta, T.; Asakawa, T.; Iinuma, M.; Fujii, S.; Tanaka, K.; Kan, T. Chem. Commun. 2006, 3648.
[30] Abdur Rahman, S. M.; Sonoda, M.; Ono, M.; Miki, K.; Tobe, Y., Org. Lett. 2006, 8, 1197.
[31] Li, C.-K.; Zeng, Y.; Wang, J.-B. Tetrahedron Lett. 2009, 50, 2956.
[32] Ye, S.; Gao, K.; Zhou, H.; Yang, X.; Wu, J. Chem. Commun. 2009, 5406.
[33] (a) Ye, S.-Q.; Yang X.-D.; Wu, J. Chem. Commun. 2010, 46, 2950.
(b) Ye, S.-Q.; Ren, H.; Wu, J. J. Comb. Chem. 2010, 12, 670.
[34] Bryan C. S.; Lautens, M. Org. Lett. 2010, 12, 2754.
[35] Kim, K. H.; Kim, S. H.; Park, B. R.; Kim, J.-N. Tetrahedron Lett. 2010, 51, 3368.
[36] Lim, C. H.; Kim, K. H.; Lim, J. W.; Kim, J. N. Tetrahedron Lett. 2013, 54, 5808.
[37] (a) Wang, W.-Y.; Sun, L. L.; Deng, C. L.; Tang, R.-Y.; Zhang, X.-G. Synthesis 2013, 45, 118.
(b) Zhang, T.; Chen, F.; Zhang, X.-H.; Qian, P.-C.; Zhang, X.-G. J. Org. Chem. 2019, 84, 307.
[38] (a) Álvarez, E.; Miguel, D.; García-García, P.; Fernández-Rodríguez, M. A.; Rodríguez, F.; Sanz, R. Synthesis 2012, 44, 1874.
(b) Alvarez, E.; Nieto Faza, O.; Silva Lopez, C.; Fernandez-Rodri-guez, M. A.; Sanz, R. Chem.-Eur. J. 2015, 21, 12889.
[39] Chen, Z.; Jia, X.; Huang, J.; Yuan, J. J. Org. Chem. 2014, 79, 10674.
[40] Hou, Q. W.; Zhang, Z. H.; Kong, F. J.; Wang, S. Z.; Wang, H. Q.; Yao, Z. J. Chem. Commun. 2013, 49, 695.
[41] Aziz, J.; Brion, J.-D.; Alami, M.; Hamze, A. RSC Adv. 2015, 5, 74391.
[42] Shin, S.; Son, J. Y.; Choi, C.; Kim, S.; Lee, P. H. J. Org. Chem. 2016, 81, 11706.
[43] Zhou, B.; Wu, Z.; Qi, W.; Sun, X.; Zhang, Y. Adv. Synth. Catal. 2018, 360, 4480.
[44] Peng, J.-B.; Wu, F.-P.; Spannenberg, A.; Wu, X.-F. Chem. Eur. J. 2019, 25, 8696.
[45] Borthakur, S.; Baruah, S.; Sarma, B.; Gogoi, S. Org. Lett. 2019, 21, 2768.
[46] (a) Hashmi, A. S. K.; Braun, I.; Noesel, P.; Schaedlich, J.; Wieteck, M.; Rudolph, M.; Rominger, F. Angew. Chem., Int. Ed. 2012, 51, 4456.
(b) Plajer, A; Ahrens, L.; Wieteck, M.; Lustosa, D. M.; Babaahmadi, R.; Yates, B.; Ariafard, A.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Chem.-Eur. J. 2018, 24, 10766.
[47] Salacz, L.; Girard, N.; Suffert, J.; Blond, G. Molecules 2019, 24, 595.
[48] Whitlock, H. W.; Sandvick, P. E.; Overman, L. E.; Reichardt, P. B. J Org. Chem. 1969, 34, 879.
[49] (a) Schreiner, P. R.; Prall, M.; Lutz, V. Angew. Chem., Int. Ed. 2003, 42, 5757.
(b) Garcia-Garcia, P.; Sanjuan, A. M.; Rashid, M. A.; Martinez-Cuezva, A.; Fernandez-Rodriguez, M. A.; Rodriguez, F.; Sanz, R. J. Org. Chem. 2017, 82, 1155.
[50] Huang, X.; Yang, Y. Org. Lett. 2007, 9, 1667.
[51] Xiao, Q.; Zhu, H.; Li, G.; Chen, Z. Adv. Synth. Catal. 2014, 356, 3809.
[52] Martinelli, C.; Cardone, A.; Pinto, V.; Mastropasqua Talamo, M.; D'Arienzo, M. L.; Mesto, E.; Schingaro, E.; Scordari, F.; Naso, F.; Musio, R.; Farinola, G. M. Org. Lett. 2014, 16, 3424.
[53] König, B.; Pitsch, W.; Klein, M.; Vasold, R.; Prall, M.; Schreiner, P. R. J. Org. Chem. 2001, 66, 1742.
[54] Kovalenko, S. V.; Peabody, S.; Manoharan, M.; Clark, R. J.; Alabugin, I. V. Org. Lett. 2004, 6, 2457.
[55] Peabody, S. W.; Breiner, B.; Kovalenko, S. V.; Patil, S.; Alabugin, I. V. Org. Biomol. Chem. 2005, 3, 218.
[56] Qin, X.-Y.; He, L.; Li, J.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Chem. Commun. 2019, 55, 3227.
[57] Cordier, P.; Aubert, C.; Malacria, M.; Lacote, E.; Gandon, V. Angew. Chem., Int. Ed. 2009, 48, 8757.
[58] Sousa, C. M.; Berthet, J.; Delbaere, S.; Coelho P. J. J. Org. Chem. 2014, 79, 5781.
[59] Sai, M.; Matsubara, S. Synlett 2014, 25, 2067.
[60] Warner, A. J.; Enright, K. M.; Cole, J. M.; Yuan, K.; McGough, J. S.; Ingleson, M. J. Org. Biomol. Chem. 2019, 17, 5520.
Outlines

/