Trifluoromethanesulfonylation of Phenols

  • Bai Xiaodong ,
  • Fu Zhihong ,
  • Cao Yucai ,
  • Lin Jinhong
Expand
  • a School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500;
    b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032;
    c State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins, Shanghai Research Institute of Chemical Industry Co. Ltd., Shanghai 200062

Received date: 2019-11-22

  Revised date: 2019-12-27

  Online published: 2020-01-03

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21421002, 21672242, 21971252, 51104122), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS) (No. QYZDJSSW-SLH049), the Youth Innovation Promotion Association CAS (No. 2019256), the Fujian Institute of Innovation, CAS (No. FJCXY18040102), and the Shanghai Research Institute of Chemical Industry Co., LTD. (No. SKL-LCTP-201802).

Abstract

As aryl triflates are widely used in organic synthesis and medicinal chemistry, significant efforts have been directed towards the development of efficient methods for their synthesis. It was found that trifluoromethanesulfonyl pyridinium salt (C5H5N+SO2CF3·CF3SO-3) was able to act as a mild trifluoromethanesulfonylation reagent to convert phenols into aryl triflates. All aryl triflate products could be purified simply by washing, and tedious chromatography operations were avoided. Besides aryl triflates, vinyl triflates could also be synthesized by using this pyridinium salt as reagent. The pyridinium salt could be easily prepared and purified, is stable under dry atmosphere, and thus may become an easy-to-handle reagent.

Cite this article

Bai Xiaodong , Fu Zhihong , Cao Yucai , Lin Jinhong . Trifluoromethanesulfonylation of Phenols[J]. Chinese Journal of Organic Chemistry, 2020 , 40(4) : 1028 -1032 . DOI: 10.6023/cjoc201911026

References

[1] (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(b) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046.
(c) Zhang, M.; Chen, B.; Ge, C.; Liu, R.; Gao, J.; Jia, Y. Chin. J. Org. Chem. 2016, 36, 1636(in Chinese). (张鸣頔, 陈斌, 葛晨, 刘人荣, 高建荣, 贾义霞, 有机化学, 2016, 36, 1636.)
[2] (a) Moriconi, A.; Bigogno, C.; Bianchini, G.; Caligiuri, A.; Resconi, A.; Dondio, M. G.; D'Anniballe, G.; Allegretti, M. ACS Med. Chem. Lett. 2011, 2, 768.
(b) Broccatelli, F.; Mannhold, R.; Moriconi, A.; Giuli, S.; Carosati, E. Mol. Pharm. 2012, 9, 2290.
[3] (a) Tadross, P. M.; Stoltz, B. M. Chem. Rev. 2012, 112, 3550.
(b) Bhunia, A.; Yetra, S. R.; Biju, A. T. Chem. Soc. Rev. 2012, 41, 3140.
(c) Dubrovskiy, A. V.; Markina, N. A.; Larock, R. C. Org. Biomol. Chem. 2013, 11, 191.
[4] (a) Pialat, A.; Liegault, B.; Taillefer, M. Org. Lett. 2013, 15, 1764.
(b) Yang, Z.-W.; Zhang, Q.; Jiang, Y.-Y.; Li, L.; Xiao, B.; Fu, Y. Chem. Commun. 2016, 52, 6709.
(c) Nakazawa, H.; Sako, M.; Masui, Y.; Kurosaki, R.; Yamamoto, S.; Kamei, T.; Shimada, T. Org. Lett. 2019, 21, 6466.
[5] Norihiko, Y.; Tsuyoshi, F.; Takao, M.; Akira, S. Chem. Lett. 1991, 20, 459.
[6] (a) Stang, P. J.; Hanack, M.; Subramanian, L. R. Synthesis 1982, 85.
(b) Ritter, K. Synthesis 1993, 735.
[7] Seganish, W. M.; DeShong, P. J. Org. Chem. 2004, 69, 1137.
[8] (a) Qing, F.-L.; Fan, J.; Sun, H.-B.; Yue, X.-J. J. Chem. Soc., Perkin Trans. 11997, 3053.
(b) Frantz, D. E.; Weaver, D. G.; Carey, J. P.; Kress, M. H.; Dolling, U. H. Org. Lett. 2002, 4, 4717.
(c) Gill, D.; Hester, A. J.; Lloyd-Jones, G. C. Org. Biomol. Chem. 2004, 2, 2547.
[9] Effenberger, F.; Mack, K. E. Tetrahedron Lett. 1970, 11, 3947.
[10] (a) Hendrickson, J. B.; Bergeron, R. Tetrahedron Lett. 1973, 14, 4607.
(b) Bengtson, A.; Hallberg, A.; Larhed, M. Org. Lett. 2002, 4, 1231.
[11] Zhu, J.; Bigot, A.; Elise, M.; Dau, T. H. Tetrahedron Lett. 1997, 38, 1181.
[12] Wentworth, A. D.; Wentworth, P.; Mansoor, U. F.; Janda, K. D. Org. Lett. 2000, 2, 477.
(b) Chung, C. W. Y.; Toy, P. H. Tetrahedron 2005, 61, 709.
[13] (a) White, K. L.; Mewald, M.; Movassaghi, M. J. Org. Chem. 2015, 80, 7403.
(b) Yogendra, S.; Hennersdorf, F.; Bauzá, A.; Frontera, A.; Fischer, R.; Weigand, J. J. Chem. Commun. 2017, 53, 2954.
[14] Wu, J.; Lu, C.; Lu, L.; Shen, Q. Chin. J. Chem. 2018, 36, 1031.
[15] Takeshi, K.; Hideki, K.; Takeshi, F.; Rieko, T.; Takashi, T.; Koji, S.; Naokid, T. US 2011/112103, 2011.
[16] Ma, X.; Dang, H.; Rose, J. A.; Rablen, P.; Herzon, S. B. J. Am. Chem. Soc. 2017, 139, 5998.
[17] James M. B.; Daniel C. B.; Timothy, B.; Allen, B. WO 2017/218922, 2017.
[18] Qin, L.; Ren, X.; Lu, Y.; Li, Y.; Zhou, J. Angew. Chem., Int. Ed. 2012, 51, 5915.
[19] Scheidt, F.; Neufeld, J.; Schäfer, M.; Thiehoff, C.; Gilmour, R. Org. Lett. 2018, 20, 8073.
[20] Chao, J.; Istvan J. E.; Kevin, G.; Richard, H. WO 2014/8214, 2014.
[21] Su, N.; Theorell, J. A.; Wink, D. J.; Driver, T. Angew. Chem., Int. Ed. 2015, 54, 12942.
[22] Picado, A; Li, S.; Dieter, R. K. J. Org. Chem. 2016, 81, 1391.
Outlines

/