Recent Progress on[3+2] Ring-Expansion Reaction of Cyclopropane with Unsaturated Compounds

  • Liu Wenzhu ,
  • Dou Lijuan ,
  • Mu Weihua
Expand
  • Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500

Received date: 2019-10-13

  Revised date: 2019-12-23

  Online published: 2020-01-15

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21763033, 21363028).

Abstract

Due to its high ring strain, cyclopropanes can react with a variety of unsaturated compounds to construct five- membered carbo- and hetero-cycles through[3+2] ring-expansion reaction. These five-membered compounds are key skeletons of many drugs, natural products and bioactive molecules, and are also an important class of organic intermediates which have wide applications in medicine, agriculture, chemical engineering, organic synthesis and other related areas. Recently, more and more chemists have constructed a lot of complex five-membered carbo- and hetero-cycles by using cyclopropane as a three-carbon synthon, which has promoted the rapid development of focus area. This review summarizes the most recent [3+2] ring-expansion reaction of cyclopropanes with compounds containing unsaturated bonds such as olefins, aldehydes, ketones and nitriles in the past decade. Moreover, the prospects of future development are also discussed.

Cite this article

Liu Wenzhu , Dou Lijuan , Mu Weihua . Recent Progress on[3+2] Ring-Expansion Reaction of Cyclopropane with Unsaturated Compounds[J]. Chinese Journal of Organic Chemistry, 2020 , 40(5) : 1150 -1176 . DOI: 10.6023/cjoc201910019

References

[1] Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165.
[2] Khoury, P. R.; Goddard, J. D.; Tam, W. Tetrahedron 2004, 60, 8103.
[3] Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410.
[4] Bach, R. D.; Dmitrenko, O. J. Org. Chem. 2002, 67, 2588.
[5] Wang, L.; Xu, J.-H. Chin. J. Org. Chem. 2003, 23, 750(in Chinese). (王磊, 徐建华, 有机化学, 2003, 23, 750.)
[6] Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321.
[7] Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117.
[8] Yuan, M.-F.; Chen, Y.-L.; Ding, W.-Y.; Cao, W.-G. Chin. J. Org. Chem. 2003, 23, 901(in Chinese). (袁美斐, 陈雅丽, 丁维钰, 曹卫国, 有机化学, 2003, 23, 901.)
[9] De Simone, F.; Waser, J. Synthesis 2009, 3353.
[10] Lebold, T. P.; Kerr, M. A. Pure Appl. Chem. 2010, 82, 1797.
[11] Mel'nikov, M. Y.; Budynina, E. M.; Ivanova, O. A.; Trushkov, I. V. Mendeleev Commun. 2011, 21, 293.
[12] Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804.
[13] De Nanteuil, F.; de Simone, F.; Frei, R.; Benfatti, F.; Serrano, E.; Waser, J. Chem. Commun. 2014, 50, 10912.
[14] Pandey, A. K.; Ghosh, A.; Banerjee, P. Isr. J. Chem. 2016, 56, 512.
[15] Pagenkopf, B. L.; Vemula, N. Eur. J. Org. Chem. 2017, 2017, 2561.
[16] Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Biomol. Chem. 2015, 13, 655.
[17] Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem., Int. Ed. 2014, 53, 5504.
[18] Rassadin, V. A.; Six, Y. Tetrahedron 2016, 72, 4701.
[19] Brackmann, F.; de Meijere, A. Chem. Rev. 2007, 107, 4493.
[20] Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151.
[21] Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051.
[22] De Simone, F.; Waser, J. Synlett 2011, 589.
[23] Tang, P.; Qin, Y. Synthesis 2012, 44, 2969.
[24] Wang, Z. Synlett 2012, 23, 2311.
[25] Liao, S.; Sun, X.-L.; Tang, Y. Acc. Chem. Res. 2014, 47, 2260.
[26] Wang, L.; Zhou, J.; Tang, Y. Chin. J. Chem. 2018, 36, 1123.
[27] Fang, J.; Ren, J.; Wang, Z. Tetrahedron Lett. 2008, 49, 6659.
[28] De Nanteuil, F.; Waser, J. Angew. Chem., Int. Ed. 2011, 50, 12075.
[29] De Nanteuil, F.; Serrano, E.; Perrotta, D.; Waser, J. J. Am. Chem. Soc. 2014, 136, 6239.
[30] Waser, J.; Serrano, E.; de Nanteuil, F. Synlett 2014, 25, 2285.
[31] Racine, S.; de Nanteuil, F.; Serrano, E.; Waser, J. Angew. Chem., Int. Ed. 2014, 53, 8484.
[32] Mackay, W. D.; Fistikci, M.; Carris, R. M.; Johnson, J. S. Org. Lett. 2014, 16, 1626.
[33] Verma, K.; Banerjee, P. Adv. Synth. Catal. 2016, 358, 2053.
[34] Dey, R.; Banerjee, P. Org. Lett. 2017, 19, 304.
[35] Verma, K.; Banerjee, P. Adv. Synth. Catal. 2017, 359, 3848.
[36] Volkova, Y. A.; Budynina, E. M.; Kaplun, A. E.; Ivanova, O. A.; Chagarovskiy, A. O.; Skvortsov, D. A.; Rybakov, V. B.; Trushkov, I. V.; Melnikov, M. Y. Chem.-Eur. J. 2013, 19, 6586.
[37] Chagarovskiy, A. O.; Budynina, E. M.; Ivanova, O. A.; Grishin, Y. K.; Trushkov, I. V.; Verteletskii, P. V. Tetrahedron 2009, 65, 5385.
[38] Budynina, E. M.; Ivanova, O. A.; Chagarovskiy, A. O.; Grishin, Y. K.; Trushkov, I. V.; Melnikov, M. Y. J. Org. Chem. 2015, 80, 12212.
[39] Xiong, H.; Xu, H.; Liao, S.; Xie, Z.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 7851.
[40] Yan, W.; Wang, P.; Wang, L.; Sun, X.; Tang, Y. Acta Chim. Sinica 2017, 75, 783(in Chinese). (严文广, 王盼, 王丽佳, 孙秀丽, 唐勇, 化学学报, 2017, 75, 783.)
[41] Kaicharla, T.; Roy, T.; Thangaraj, M.; Gonnade, R. G.; Biju, A. T. Angew. Chem., Int. Ed. 2016, 55, 10061.
[42] Pandey, A. K.; Varshnaya, R. K.; Banerjee, P. Eur. J. Org. Chem. 2017, 2017, 1647.
[43] Xia, X.-F.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M. Chem. Asian J. 2012, 7, 1538.
[44] Zhu, W.; Fang, J.; Liu, Y.; Ren, J.; Wang, Z. Angew. Chem., Int. Ed. 2013, 52, 2032.
[45] Wang, Z.; Ren, J.; Wang, Z. Org. Lett. 2013, 15, 5682.
[46] Thangamani, M.; Srinivasan, K. J. Org. Chem. 2018, 83, 571.
[47] Zhu, J.; Liang, Y.; Wang, L.; Zheng, Z.-B.; Houk, K. N.; Tang, Y. J. Am. Chem. Soc. 2014, 136, 6900.
[48] Mukherjee, P.; Das, A. R. J. Org. Chem. 2017, 82, 2794.
[49] Jackson, S. T.; Karadeolian, A.; Driega, A. B.; Kerr, M. A. J. Am. Chem. Soc. 2008, 130, 4196.
[50] Curiel Tejeda, J. E.; Irwin, L. C.; Kerr, M. A. Org. Lett. 2016, 18, 4738.
[51] Parsons, A. T.; Smith, A. G.; Neel, A. J.; Johnson, J. S. J. Am. Chem. Soc. 2010, 132, 9688.
[52] Alajarin, M.; Egea, A.; Orenes, R.-A.; Vidal, A. Org. Biomol. Chem. 2016, 14, 10275.
[53] Feng, M.; Yang, P.; Yang, G.; Chen, W.; Chai, Z. J. Org. Chem. 2017, 83, 174.
[54] Tsunoi, S.; Maruoka, Y.; Suzuki, I.; Shibata, I. Org. Lett. 2016, 47, 4010.
[55] Preindl, J.; Chakrabarty, S.; Waser, J. Chem. Sci. 2017, 8, 7112.
[56] Zhang, M.-C.; Wang, D.-C.; Xie, M.-S.; Qu, H.-M.; Guo, H.-M.; You, S.-L. Chem. 2019, 5, 156.
[57] Hao, E.-J.; Fu, D.-D.; Wang, D.-C, Zhang, T.; Qu, G.-R.; Li, G.-X.; Lan, Y.; Guo, H.-M. Org. Chem. Front. 2019, 6, 863.
[58] Akaev, A. A.; Bezzubov, S. I.; Desyatkin, V. G.; Vorobyeva, N. S.; Majouga, A. G.; Melnikov, M. Y.; Budynina, E. M. J. Org. Chem. 2019, 84, 3340.
[59] Pohlhaus, P. D.; Sanders, S. D.; Parsons, A. T.; Li, W.; Johnson, J. S. J. Am. Chem. Soc. 2008, 130, 8642.
[60] Kreft, A.; Jones, P. G.; Werz, D. B. Org. Lett. 2018, 20, 2059.
[61] Parsons, A. T.; Johnson, J. S. J. Am. Chem. Soc. 2009, 131, 3122.
[62] Smith, A. G.; Slade, M. C.; Johnson, J. S. Org. Lett. 2011, 13, 1996.
[63] Christie, S. D. R.; Cummins, J.; Elsegood, M. R. J.; Dawson, G. Synlett 2009, 257.
[64] Benfatti, F.; de Nanteuil, F.; Waser, J. Org. Lett. 2012, 14, 386.
[65] Benfatti, F.; de Nanteuil, F.; Waser, J. Chem.-Eur. J. 2012, 18, 4844.
[66] Haubenreisser, S.; Hensenne, P.; Schröder, S.; Niggemann. M. Org. Lett. 2013, 15, 2262.
[67] Rivero, A. R.; Fernandez, I.; Arellano, C. R. D.; Sierra, M. A. J. Org. Chem. 2014, 80, 1207.
[68] Sabbatani, J.; Maulide, N. Angew. Chem., Int. Ed. 2016, 55, 6780.
[69] Yang, G.; Shen, Y.; Li, K.; Sun, Y.; Hua, Y. J. Org. Chem. 2010, 76, 229.
[70] Yang, G.; Sun, Y.; Shen, Y.; Chai, Z.; Zhou, S.; Chu, J.; Chai, J. J. Org. Chem. 2013, 78, 5393.
[71] Yang, G.; Wang, T.; Chai, J.; Chai, Z. Eur. J. Org. Chem. 2015, 1040.
[72] Sanders, S. D.; Ruiz-Olalla, A.; Johnson, J. S. Chem. Commun. 2009, 34, 5135.
[73] Shen, Y.; Chai, J.; Yang, G.; Chen, W.; Chai, Z. J. Org. Chem. 2018, 83, 12549.
[74] Xu, X.; Lu, H.; Ruppel, J. V.; Cui, X.; Lopea de Mesa, S.; Wojtas, L.; Zhang, X. J. Am. Chem. Soc. 2011, 133, 15292.
[75] Yang, P.; Shen Y.; Feng, M.; Yang, G.; Chai, Z. Eur. J. Org. Chem. 2018, 4103.
[76] Shen, Y.; Yang, P.-F.; Yang, G.; Chen, W.-L.; Chai, Z. Org. Biomol. Chem. 2018, 16, 2688.
[77] Ma, X.; Tang, Q.; Ke, J.; Yang, X.; Zhang, J.; Shao, H. Org. Lett. 2013, 15, 5170.
[78] Ma, X.; Zhang, J.; Tang, Q.; Ke, J.; Zou, W.; Shao, H. Chem. Commun. 2014, 50, 3505.
[79] Zhu, W.; Ren, J.; Wang, Z. Eur. J. Org. Chem. 2014, 2014, 3561.
[80] Ren, J.; B, J.; Ma, W.; Wang, Z. Synlett 2014, 25, 2260.
[81] Zhang, J.; Xing, S.; Ren, J.; Jiang, S.; Wang, Z. Org. Lett. 2014, 17, 218.
[82] Wang, Z.; Chen, S.; Ren, J.; Wang, Z. Org. Lett. 2015, 17, 4184.
[83] Wang, H.; Yang, W.; Liu, H.; Wang, W.; Li, H. Org. Biomol. Chem. 2012, 10, 5032.
[84] Goldberg, A. F. G.; O'Connor, N. R.; Craig II, R. A.; Stoltz, B. M. Org. Lett. 2012, 14, 5314.
[85] Sun, Y.; Yang, G.; Chai, Z.; Mu, X.; Chai, J. Org. Biomol. Chem. 2013, 11, 7859.
[86] Augustin, A. U.; Sensse, M.; Jones, P. G.; Werz, D. B. Angew. Chem., Int. Ed. 2017, 56, 14293.
[87] Augustin, A. U.; Busse, M.; Jones, P. G.; Werz, D. B. Org. Lett. 2018, 20, 820.
[88] Xie, M.-S.; Zhao, G.-F.; Qin, T.; Suo, Y.-B.; Qu, G.-R.; Guo, H.-M. Chem. Commun. 2019, 55, 1580.
[89] Chakrabarty, S.; Chatterjee, I.; Wibbeling, B.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2014, 53, 5964.
[90] Wang, Z.; Zhang, H.; Xu, P; Luo, Y. Chem. Commun. 2018, 54, 10128.
[91] Jiao, L.; Ye, S.; Yu, Z.-X. J. Am. Chem. Soc. 2008, 130, 7178.
[92] Jiao, L.; Lin, M.; Yu, Z.-X. Chem. Commun. 2010, 46, 1059.
[93] Li, Q.; Jiang G.; Jiao, L.; Yu, Z.-X. Org. Lett. 2010, 12, 1332.
[94] Lin, M.; Kang, G.-Y.; Guo, Y.-A.; Yu, Z.-X. J. Am. Chem. Soc. 2012, 134, 398.
[95] Luo, Z.; Zhou, B.; Li, Y. Org. Lett. 2012, 14, 2540.
[96] Zhang, H.; Jeon, K. O.; Hay, E.; Geib, S.; Curran, D.; LaPorte, M. Org. Lett. 2014, 16, 94.
[97] Chen, H.; Zhang, J.; Wang, D. Z. Org. Lett. 2015, 17, 2098.
[98] Goldberg, A. F. G.; Stoltz, B. M. Org. Lett. 2011, 13, 4474.
[99] Wei, F.; Ren, C.-L.; Wang, D.; Liu, L. Chem.-Eur. J. 2015, 21, 2335.
[100] Li, W.-K.; Liu, Z.-S.; He, L.; Kang, T.-R.; Liu, Q.-Z. Asian. J. Org. Chem. 2015, 4, 28.
[101] Trost, B. M.; Morris, P. J. Angew. Chem., Int. Ed. 2011, 50, 6167.
[102] Trost, B. M.; Morris, P. J.; Sprague, S. J. J. Am. Chem. Soc. 2012, 134, 17823.
[103] Mei, L.-Y.; Wei, Y.; Xu, Q.; Shi, M. Organometallics 2012, 31, 7591.
[104] Xie, M.-S.; Wang, Y.; Li, J.-P.; Du, C.; Zhang, Y.-Y.; Hao, E.-J.; Zhang, M.-Z.; Qu, G.-R.; Guo, H.-M. Chem. Commun. 2015, 51, 12451.
[105] Ma, C.; Huang, Y.; Zhao, Y. ACS Catal. 2016, 6, 6408.
[106] Gee, Y. S.; Rivinoja, D. J.; Wales, S. M.; Gardiner, M. G.; Ryan, J. H.; Hyland, C. J. T. J. Org. Chem. 2017, 82, 13517.
[107] Ding, W.-P.; Zhang, G.-P.; Jiang, Y.-J.; Du, J.; Liu, X.-Y.; Chen, D.; Ding, C.-H.; Deng, Q.-H.; Hou, X.-L. Org. Lett. 2019, 21, 6805.
[108] Tamaki, T.; Ohashi, M.; Ogoshi, S. Angew. Chem., Int. Ed. 2011, 50, 12067.
[109] Tombe, R.; Iwamoto, T.; Kurahashi, T.; Matsubara, S. Synlett 2014, 25, 2281.
[110] Liu, Q.-S.; Wang, D.; Yang, Z.; Luan, Y.; Yang, J.; Li, J.; Pu, Y.; Ye, M. J. Am. Chem. Soc. 2017, 139, 18150.
[111] Dieskau, A. P.; Holzwarth, M. S.; Plietker, B. J. Am. Chem. Soc. 2012, 134, 5048.
[112] Hao, W.; Harenberg, J. H.; Wu, X.; MacMillan, S. N.; Lin, S. J. Am. Chem. Soc. 2018, 140, 3514.
[113] Yang, J.; Shen, Y.; Lim, Y. J.; Yoshikai, N. Chem. Sci. 2018, 9, 6928.
[114] Yang, J.; Sun, Q.; Yoshikai, N. ACS Catal. 2019, 9, 1973.
[115] Parsons, A. T.; Campbell, M. J.; Johnson, J. S. Org. Lett. 2008, 10, 2541.
[116] Mei, L.-Y.; Wei, Y.; Xu, Q.; Shi, M. Organometallics 2013, 32, 3544.
[117] Huang, X.-B.; Li, X.-J.; Li, T.-T.; Chen, B.; Chu, W.-D.; He, L.; Liu, Q.-Z. Org. Lett. 2019, 21, 1713.
[118] Miyake, Y.; Endo, S.; Moriyama, T.; Sakata, K.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2013, 52, 1758.
[119] Tombe, R.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 1791.
[120] Lu, Z.; Shen, M.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 1162.
[121] Amador, A. G.; Sherbrook, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2016, 138, 4722.
[122] Maity, S.; Zhu, M.; Shinabery, R. S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 222.
[123] Nguyen, T. H.; Maity, S.; Zheng, N. Beilstein J. Org. Chem. 2014, 10, 975.
[124] Nguyen, T. H.; Morris, S. A.; Zheng, N. Adv. Synth. Catal. 2014, 356, 2831.
[125] Sasaki, M.; Kondo, Y.; Nishio, T.; Takeda, K. Org. Lett. 2016, 18, 3858.
[126] Blom, J.; Vidal-Albalat, A.; Jørgensen, J.; Barløse, C. L.; Jessen, K. S.; Iversen, M. V.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2017, 56, 11831.
[127] Kamlar, M.; Franc, M.; Císařová, I.; Gyepes, R.; Veselý, J. Chem. Commun. 2019, 55, 3829.
[128] Pan, D.; Mou, C.; Zan, N.; Lv, Y.; Song, B.-A.; Chi, Y. R.; Jin, Z. Org. Lett. 2019, 21, 6624.
[129] Cui, B.; Ren, J.; Wang, Z. J. Org. Chem. 2014, 79, 790.
[130] Gladow, D.; Reissig, H.-U. J. Org. Chem. 2014, 79, 4492.
[131] Zaytsev, S. V.; Ivanov, K. L.; Skvortsov, D. A.; Bezzubov, S. I.; Melnikov, M. Y.; Budynina, E. M. J. Org. Chem. 2018, 83, 8695.
Outlines

/