Recent Advances on the Photocatalytic and Electrocatalytic Thiocyanation Reactions

  • Zhang Longfei ,
  • Niu Cong ,
  • Yang Xiaoting ,
  • Qin Hongyun ,
  • Yang Jianjing ,
  • Wen Jiangwei ,
  • Wang Hua
Expand
  • Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165

Received date: 2019-12-09

  Revised date: 2020-01-09

  Online published: 2020-01-21

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21902083, 21675099), the Major Basic Research Program of Natural Science Foundation of Shandong Province (No. ZR2018ZC0129), the College Students Innovation and Entrepreneurship Training Project of Shandong Province (No. S201910446044) and the Qufu Normal University Research Startup Fund (Nos. 6132, 6125).

Abstract

Thiocyanate, as a versatile synthon, which has important application value in many fields such as pharmaceutical, pesticide and materials. The photocatalytic and electrocatalytic thiocyanation reactions have been widely concerned in organic chemistry due to the advantages of green, efficiency and safety. In this review, the cross-coupling/thiocyanation reactions based on the photocatalytic and electrocatalytic are described, which is expected to be helpful in exploring the green synthesis of thiocyanates compounds.

Cite this article

Zhang Longfei , Niu Cong , Yang Xiaoting , Qin Hongyun , Yang Jianjing , Wen Jiangwei , Wang Hua . Recent Advances on the Photocatalytic and Electrocatalytic Thiocyanation Reactions[J]. Chinese Journal of Organic Chemistry, 2020 , 40(5) : 1117 -1128 . DOI: 10.6023/cjoc201912011

References

[1] (a) Capon, R. J.; Skene, C.; Liu, E. H.-T.; Lacey, E.; Gill, J. H.; Heiland, K.; Friedel, T. J. Org. Chem. 2001, 66, 7765.
(b) Dutta, S.; Abe, H.; Aoyagi, S.; Kibayashi, C.; Gates, K. S. J. Am. Chem. Soc. 2005, 127, 15004.
(c) Elhalem, E.; Bailey, B. N.; Docampo, R.; Ujváry, I.; Szajnman, S. H.; Rodriguez, J. B. J. Med. Chem. 2002, 45, 3984.
(d) Kokorekin, V.; Terent'ev, A.; Ramenskaya, G.; Grammatikova, N.; Rodionova, G.; Ilovaiskii, A. Pharm. Chem. J. 2013, 47, 422.
(e) Yasman, Y.; Edrada, R. A.; Wray, V.; Proksch, P. J. Nat. Prod. 2003, 66, 1512.
[2] (a) Khalili, D. Chin. Chem. Lett. 2015, 26, 547.
(b) Zeng, Y.-F.; Tan, D.-H.; Chen, Y.; Lv, W.-X.; Liu, X.-G.; Li, Q.; Wang, H. Org. Chem. Front. 2015, 2, 1511.
(c) Guo, L.-N.; Gu, Y.-R.; Yang, H.; Hu, J. Org. Biomol. Chem. 2016, 14, 3098.
(d) Khalili, D. New J. Chem. 2016, 40, 2547.
(e) Chen, Q.; Lei, Y.; Wang, Y.; Wang, C.; Wang, Y.; Xu, Z.; Wang, H.; Wang, R. Org. Chem. Front. 2017, 4, 369.
(f) Ji, F.; Fan, Y.; Yang, R.; Yang, Y.; Yu, D.; Wang, M.; Li, Z. Asian J. Org. Chem. 2017, 6, 682.
(g) Jiang, G.; Zhu, C.; Li, J.; Wu, W.; Jiang, H. Adv. Synth. Catal. 2017, 359, 1208.
(h) Prieto, A.; Uzel, A.; Bouyssi, D.; Monteiro, N. Eur. J. Org. Chem. 2017, 2017, 4201.
(i) Chen, Y.; Wang, S.; Jiang, Q.; Cheng, C.; Xiao, X.; Zhu, G. J. Org. Chem. 2018, 83, 716.
(j) Khaikate, O.; Meesin, J.; Pohmakotr, M.; Reutrakul, V.; Leowanawat, P.; Soorukram, D.; Kuhakarn, C. Org. Biomol. Chem. 2018, 16, 8553.
(k) Qiu, J.; Wu, D.; Karmaker, P. G.; Yin, H.; Chen, F.-X. Org. Lett. 2018, 20, 1600.
(l) Wu, C.; Lu, L.-H.; Peng, A.-Z.; Jia, G.-K.; Peng, C.; Cao, Z.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 20, 3683.
(m) Dey, A.; Hajra, A. Adv. Synth. Catal. 2019, 361, 842.
(n) Noikham, M.; Yotphan, S. Eur. J. Org. Chem. 2019, 2019, 2759.
[3] Castanheiro, T.; Suffert, J.; Donnard, M.; Gulea, M. Chem. Soc. Rev. 2016, 45, 494.
[4] Vekariya, R. H.; Patel, H. D. Synth. Commun. 2017, 47, 87.
[5] Qin, X.; Zhang, L.-Y.; Feng, G.-F.; Jin, C.-A. Chin. J. Org. Chem. 2019, 39, 287(in Chinese). (徐庆, 张连阳, 冯高峰, 金城安, 有机化学, 2019, 39, 287.)
[6] (a) Hartwig, J. F. Nature 2008, 455, 314.
(b) Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 7156.
(c) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481.
(d) Xi, Y.; Dong, B.; McClain, E. J.; Wang, Q.; Gregg, T. L.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Angew. Chem., Int. Ed. 2014, 53, 4657.
(e) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. A.; Liu, X. Chem. Soc. Rev. 2015, 44, 291.
(f) Liu, Y.; Xiong, J.; Wei, L. Chin. J. Org. Chem. 2017, 37, 1667(in Chinese). (刘云云, 熊进, 韦丽, 有机化学, 2017, 37, 1667.)
(g) Mei, H.; Yin, Z.; Liu, J.; Sun, H.; Han, J. Chin. J. Chem. 2019, 37, 292.
(h) Yang, Q.-L.; Fang, P.; Mei, T.-S. Chin. J. Chem. 2018, 36, 338.
[7] Yadav, A. K.; Yadav, L. D. S. Tetrahedron Lett. 2015, 56, 6696.
[8] Yuan, P.-F.; Zhang, Q.-B.; Jin, X.-L.; Lei, W.-L.; Wu, L.-Z.; Liu, Q. Green Chem. 2018, 20, 5464.
[9] Guy, R. G.; Thompson, J. J. Tetrahedron 1978, 34, 541.
[10] Chen, Y.-J.; He, Y.-H.; Guan, Z. Tetrahedron 2019, 75, 3053.
[11] Zhang, D.; Wang, H.; Bolm, C. Chem. Commun. 2018, 54, 5772.
[12] Gao, Y.; Liu, Y.; Wan, J.-P. J. Org. Chem. 2019, 84, 2243.
[13] Fan, W.; Yang, Q.; Xu, F.; Li, P. J. Org. Chem. 2014, 79, 10588.
[14] Wang, L.; Wang, C.; Liu, W.; Chen, Q.; He, M. Tetrahedron Lett. 2016, 57, 1771.
[15] Hosseini-Sarvari, M.; Hosseinpour, Z.; Koohgard, M. New J. Chem. 2018, 42, 19237.
[16] Yang, D.; Yan, K.; Wei, W.; Li, G.; Lu, S.; Zhao, C.; Tian, L.; Wang, H. J. Org. Chem. 2015, 80, 11073.
[17] Mitra, S.; Ghosh, M.; Mishra, S.; Hajra, A. J. Org. Chem. 2016, 47, 8275.
[18] Singh, M.; Yadav, A. K.; Yadav, L. D. S.; Singh, R. Synlett 2018, 29, 176.
[19] Chauhan, P.; Ritu, R.; Preeti, P.; Kumar, S.; Jain, N. Eur. J. Org. Chem. 2019, 2019, 4334.
[20] Tambe, S. D.; Jadhav, M. S.; Rohokale, R. S.; Kshirsagar, U. A. Eur. J. Org. Chem. 2018, 2018, 4867.
[21] Gullapalli, K.; Vijaykumar, S. Org. Biomol. Chem. 2019, 17, 2232.
[22] (a) Zhao, Y.; Wang, H.; Hou, X.; Hu, Y.; Lei, A.; Zhang, H.; Zhu, L. J. Am. Chem. Soc. 2006, 128, 15048.
(b) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
(c) Chen, M.; Zheng, X.; Li, W.; He, J.; Lei, A. J. Am. Chem. Soc. 2010, 132, 4101.
(d) Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111, 1170.
(e) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
(f) Shi, W.; Liu, C.; Lei, A. Chem. Soc. Rev. 2011, 40, 2761.
(g) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
(h) He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.; Chen, H.; Lei, A. J. Am. Chem. Soc. 2012, 134, 5766.
(i) Girard, S. A.; Knauber, T.; Li, C. J. Angew. Chem., Int. Ed. 2014, 53, 74.
(j) Liu, C.; Liu, D.; Lei, A. Acc. Chem. Res. 2014, 47, 3459.
(k) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115, 12138.
(l) Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J.-X.; Wu, L.-Z.; Lei, A. J. Am. Chem. Soc. 2015, 137, 9273.
(m) Song, C.; Yi, H.; Dou, B.; Li, Y.; Singh, A. K.; Lei, A. Chem. Commun. 2017, 53, 3689.
(n) Song, C.; Dong, X.; Yi, H.; Chiang, C.-W.; Lei, A. ACS Catal. 2018, 8, 2195.
(o) Song, C.; Liu, K.; Dong, X.; Chiang, C.-W.; Lei, A. Synlett 2019, 30, 1149.
[23] Kang, L.-S.; Luo, M.-H.; Lam, C. M.; Hu, L.-M.; Little, R. D.; Zeng, C.-C. Green Chem. 2016, 18, 3767.
[24] Liang, S.; Zeng, C. C.; Tian, H.; Sun, B.; Ren, F. Adv. Synth. Catal. 2018, 360, 1444.
[25] De Klein, W. J. Electrochim. Acta 1973, 18, 413.
[26] Levy, A.; Becker, J. Y. Electrochim. Acta 2015, 178, 294.
[27] Gitkis, A.; Becker, J. Y. Electroanalysis 2016, 28, 2802.
[28] Wen, J.; Zhang, L.; Yang, X.; Niu, C.; Wang, S.; Wei, W.; Sun, X.; Yang, J.; Wang, H. Green Chem. 2019, 21, 3597.
[29] Krishnan, P.; Gurjar, V. G. Synth. Commun. 1992, 22, 2741.
[30] Krishnan, P.; Gurjar, V. G. J. Appl. Electrochem. 1995, 25, 792.
[31] Gitkis, A.; Becker, J. Y. J. Electroanal. Chem. 2006, 593, 29.
[32] Gitkis, A.; Becker, J. Y. Electrochim. Acta 2010, 55, 5854.
[33] (a) Nair, V.; George, T. G.; Nair, L. G.; Panicker, S. B. Tetrahedron Lett. 1999, 40, 1195.
(b) Chakrabarty, M.; Sarkar, S. Tetrahedron Lett. 2003, 44, 8131.
(c) Yadav, J.; Reddy, B.; Shubashree, S.; Sadashiv, K. Tetrahedron Lett. 2004, 45, 2951.
(d) Yadav, J.; Reddy, B.; Krishna, A.; Reddy, C. S.; Narsaiah, A. Synthesis 2005, 2005, 961.
(e) Pan, X.-Q.; Lei, M.-Y.; Zou, J.-P.; Zhang, W. Tetrahedron Lett. 2009, 50, 347.
(f) Akhlaghinia, B.; Pourali, A.-R.; Rahmani, M. Synth. Commun. 2012, 42, 1184.
(g) Khazaei, A.; Zolfigol, M. A.; Mokhlesi, M.; Panah, F. D.; Sajjadifar, S. Helv. Chim. Acta 2012, 95, 106.
[34] Fotouhi, L.; Nikoofar, K. Tetrahedron Lett. 2013, 54, 2903.
[35] Kokorekin, V. A.; Sigacheva, V. L.; Petrosyan, V. A. Tetrahedron Lett. 2014, 55, 4306.
[36] Zhang, X.; Wang, C.; Jiang, H.; Sun, L. RSC Adv. 2018, 8, 22042.
[37] Yaubasarova, R. R.; Kokorekin, V. A.; Ramenskaya, G. V.; Petrosyan, V. A. Mendeleev Commun. 2019, 29, 334.
[38] Sun, L.; Zhang, X.; Li, Z.; Ma, J.; Zeng, Z.; Jiang, H. Eur. J. Org. Chem. 2018, 2018, 4949.
[39] Kokorekin, V. A.; Yaubasarova, R. R.; Neverov, S. V.; Petrosyan, V. A. Mendeleev Commun. 2016, 5, 413.
[40] Kokorekin, V. A.; Yaubasarova, R. R.; Neverov, S. V.; Petrosyan, V. A. Eur. J. Org. Chem. 2019, 2019, 4233.
[41] Dyga, M.; Hayrapetyan, D.; Rit, R. K.; Gooßen, L. J. Adv. Synth. Catal. 2019, 361, 3548.
[42] Yang, S.-M.; He, T.-J.; Lin, D.-Z.; Huang, J.-M. Org. Lett. 2019, 21, 1958.
Outlines

/