Study on Allylation Reactions of Trifluoromethylated Acylhydrazones with Allylsilanes or Allylboronates

  • Hu Yongqin ,
  • Huang Danfeng ,
  • Wang Kehu ,
  • Zhao Zhuanxia ,
  • Zhao Fangxia ,
  • Xu Weigang ,
  • Hu Yulai
Expand
  • College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070

Received date: 2019-12-04

  Revised date: 2020-02-17

  Online published: 2020-03-04

Supported by

Project supported by the National Natural Science Foundation of China (No. 21662030).

Abstract

Allylation reactions of trifluoromethylated acylhydrazones with allyltrimethylsilane or pinacolyl allylboronate were found to proceed smoothly in the presence of Lewis acid to afford a series of trifluoromethylated homoallylic N-acylhydrazines with high yields. The results showed that the activity of pinacolyl allylboronate was higher than that of allyltrimethylsilane in allylation of trifluoromethylated acylhydrazones.

Cite this article

Hu Yongqin , Huang Danfeng , Wang Kehu , Zhao Zhuanxia , Zhao Fangxia , Xu Weigang , Hu Yulai . Study on Allylation Reactions of Trifluoromethylated Acylhydrazones with Allylsilanes or Allylboronates[J]. Chinese Journal of Organic Chemistry, 2020 , 40(6) : 1689 -1696 . DOI: 10.6023/cjoc201912006

References

[1] For reviews, see:(a) Sugiura, M.; Kobayashi, S. Angew. Chem., Int. Ed. 2005, 44, 5176.
(b) Friestad, G. K. Eur. J. Org. Chem. 2005, 2005, 3157.
[2] For selected examples, see:(a) Wu, P.-L.; Peng, S.-Y.; Magrath, J. Synthesis 1995, 435.
(b) Burk, M. J.; Feaster, J. E. J. Am. Chem. Soc. 1992, 114, 6266.
(c) Meng, J.; Wen, M.; Zhang, S.; Pan, P.; Yu, X.; Deng, W.-P. J. Org. Chem. 2017, 82, 1676.
(d) Kong, Y.; Tang, M.; Wang, Y. Org. Lett. 2014, 16, 576.
(e) Liu, Y.-L.; Yin, X.-P.; Zhou, J. Chin. J. Chem. 2018, 36, 321.
(f) Zamfir, A.; Tsogoeva, S. B. Org. Lett. 2010, 12, 188.
(g) Duan, X.-Y.; Zhou, N.-N.; Fang, R.; Yang, X.-L.; Yu, W.; Han, B. Angew. Chem., Int. Ed. 2014, 53, 3158.
[3] (a) Chauhan, J.; Ravva, M. K.; Sen, S. Org. Lett. 2019, 21, 6562.
(b) Wang, Y.; Wang, K.-H.; Su, Y.; Yang, Z.; Wen, L.; Liu, L.; Wang, J.; Huang, D.; Hu, Y. J. Org. Chem. 2018, 83, 939.
(c) Tokumaru, K.; Johnston, J. N. Chem. Sci. 2017, 8, 3187.
[4] (a) Mishra, M.; Tiwari, K.; Mourya, P.; Singh, M. M.; Singh, V. P. Polyhedron 2015, 89, 29.
(b) Lian, S.; Su, H.; Zhao, B.-X.; Liu, W.-Y.; Zheng, L.-W.; Miao, J.-Y. Bioorg. Med. Chem. 2009, 17, 7085.
(c) Toraskar, M. P.; Kadam, V. J.; Kulkarni, V. M. Int. J. ChemTech Res. 2009, 1, 1194.
(d) Wheelock, C. E.; Nakagawa, Y.; Harada, T.; Oikawa, N.; Akamatsu, M.; Smagghe, G.; Stefanou, D.; Iatrou, K.; Swevers, L. Bioorg. Med. Chem. 2006, 14, 1143.
[5] (a) Yoneya, M.; Takada, S.; Maeda, Y.; Yokoyama, H. Liq. Cryst. 2008, 35, 339.
(b) Cui, H.; Xu, Y.; Zhang, Z.-F. Anal. Chem. 2004, 76, 4002.
[6] (a) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2013, 113, 5595.
(b) Kobayashi, S.; Hamada, T.; Manabe, K. Synlett 2001, 1140.
[7] (a) Tan, K. L.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2007, 46, 1315.
(b) Kargbo, R.; Takahashi, Y.; Bhor, S.; Cook, G. R.; Lloyd-Jones, G. C.; Shepperson, I. R. J. Am. Chem. Soc. 2007, 129, 3846.
[8] (a) Schneider, U.; Chen, I.-H.; Kobayashi, S. Org. Lett. 2008, 10, 737.
(b) Chakrabarti, A.; Konishi, H.; Yamaguchi, M.; Schneider, U.; Kobayashi, S. Angew. Chem., Int. Ed. 2010, 49, 1838.
[9] (a) Lade, J. J.; Pardeshi, S. D.; Vadagaonkar, K. S.; Murugan, K.; Chaskar, A. C. RSC Adv. 2017, 7, 8011.
(b) Friestad, G. K.; Korapala, C. S.; Ding, H. J. Org. Chem. 2006, 71, 281.
[10] Zhu, Y.; Han, J.; Wang, J.; Shibata, N.; Sodeoka, M.; Soloshonok, V. A.; Coelho, J. S.; Toste, F. D. Chem. Rev. 2018, 118, 3887.
[11] (a) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(c) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(d) Boähm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Müller, K.; Obst-Sander, U.; Stahl, M. ChemBioChem 2004, 5, 637.
[12] For selected reviews, see:(a) Alonso, C.; Marigorta, E. M.; Rubiales, G.; Palacios, F. Chem. Rev. 2015, 115, 1847.
(b) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
(c) Qing, F. Chin. J. Org. Chem. 2012, 32, 815(in Chinese). (卿凤翎, 有机化学, 2012, 32, 815.)
[13] For recent articles, see:(a) Trost, B. M.; Gholami, H.; Zell, D. J. Am. Chem. Soc. 2019, 141, 11446.
(b) Ji, X.; Shi, G.; Zhang, Y. Chin. J. Org. Chem. 2019, 39, 929(in Chinese). (季小明, 史广法, 张扬会, 有机化学, 2019, 39, 929.)
(c) Yoritate, M.; Londregan, A. T.; Lian, Y.; Hartwig, J. F. J. Org. Chem. 2019, 84, 15767.
(d) Liu, Y.-L.; Yin, X.-P.; Zhou, J. Chin. J. Chem. 2018, 36, 321.
[14] (a) Moschner, J.; Stulberg, V.; Fernandes, R.; Huhmann, S.; Leppkes, J.; Koksch, B. Chem. Rev. 2019, 119, 10718.
(b) Fustero, S.; Simón-Fuentes, A.; Barrio, P.; Haufe, G. Chem. Rev. 2015, 115, 871.
(c) Liu, J.; Huang, D.; Wang, X.; Zong, W.; Su, Y.; Wang, K.; Hu, Y. Chin. J. Org. Chem. 2019, 39, 1767(in Chinese). (刘佳欣, 黄丹凤, 王小平, 宗吴中, 苏瀛鹏, 王克虎, 胡雨来. 有机化学, 2019, 39, 1767.)
(d) Wang, J.; Li, F.; Xu, Y.; Wang, J.; Wu, Z.; Yang, C.; Liu, L. Chin. J. Org. Chem. 2018, 38, 1155(in Chinese). (王晶晶, 李峰, 徐妍, 王娟, 武紫燕, 杨成玉, 刘澜涛, 有机化学, 2018, 38, 1155.)
(e) Zhang, F.-G.; Lv, N.; Zheng, Y.; Ma, J.-A. Chin. J. Chem. 2018, 36, 723.
[15] (a) Li, J.; Yang, T.; Zhang, H.; Huang, D.; Wang, K.-H.; Su, Y.; Hu, Y. Chin. J. Org. Chem. 2017, 37, 925(in Chinese). (李军, 杨天宇, 张怀远, 黄丹凤, 王克虎, 苏瀛鹏, 胡雨来, 有机化学, 2017, 37, 925.)
(b) Li, J.; Huang, D.; Zhang, H.; Zhang, X.; Wang, J.; Wang, K.-H.; Su, Y.; Hu, Y. Chin. J. Org. Chem. 2017, 37, 2985(in Chinese). (李军, 黄丹凤, 张怀远, 张兴虎, 王娟娟, 王克虎, 苏瀛鹏, 胡雨来, 有机化学, 2017, 37, 2985.)
(c) Peng, X.; Wang, K.-H.; Huang, D.; Wang, J.; Wang, Y.; Su, Y.; Hu, Y.; Fu, Y. Appl. Organomet. Chem. 2017, 31, 3731.
(d) Du, G.; Huang, D.; Wang, K.-H.; Chen, X.; Xu, Y.; Ma, J.; Su, Y.; Fu, Y.; Hu, Y. Org. Biomol. Chem. 2016, 14, 1492.
[16] (a) Wen, L.; Huang, D.; Wang, K.-H.; Wang, Y.; Liu, L.; Yang, Z.; Su, Y.; Hu, Y. Synthesis 2018, 50, 1979.
(b) Wang, K.-H.; Wang, J.; Wang, Y.; Su, Y.; Huang, D.; Fu, Y.; Du, Z.; Hu, Y. Synthesis 2018, 50, 1907.
(c) Liu, L.; Huang, D.; Wang, Y.; Wen, L.; Yang, Z.; Su, Y.; Wang, K.-H.; Hu, Y. Chin. J. Org. Chem. 2018, 38, 1469(in Chinese). (刘丽丽, 黄丹凤, 王玉祥, 文岚, 杨政, 苏瀛鹏, 王克虎, 胡雨来, 有机化学, 2018, 38, 1469.)
(d) Peng, X.; Huang, D.; Wang, K.-H.; Wang, Y.; Wang, J.; Su, Y.; Hu, Y. Org. Biomol. Chem. 2017, 15, 6214.
[17] (a) Formicola, L.; Maréchal, X.; Basse, N.; Bouvier-Durand, M.; Bonnet-Delpon, D.; Milcent, T.; Reboud-Ravaux, M.; Ongeri, S. Bioorg. Med. Chem. Lett. 2009, 19, 83.
(b) Onnis, V.; Cocco, M. T.; Fadda, R.; Congiu, C. Bioorg. Med. Chem. 2009, 17, 6158.
[18] (a) Diner, C.; Szabó, K. S. J. Am. Chem. Soc. 2017, 139, 2.
(b) Carosi, L.; Hall, D. G. Angew. Chem., Int. Ed. 2007, 46, 5913.
(c) Cui, Y.; Li, W.; Sato, T.; Yamashita, Y.; Kobayashi, S. Adv. Synth. Catal. 2013, 355, 1193.
[19] Lade, J. L.; Pardeshi, S. D.; Vadagaonkar, K. S.; Murugan, K.; Chaskar, A. C. RSC Adv. 2017, 7, 8011.
[20] Dilman, A. D.; Arkhipov, D. E.; Levin, V. V.; Belyakov, P. A.; Korlyukov, A. A.; Struchkova, M. I.; Tartakovsky, V. A. J. Org. Chem. 2008, 73, 5643.
[21] (a) Hamada, T.; Manabe, K.; Kobayashi, S. Angew. Chem., Int. Ed. 2003, 42, 3927.
(b) Fujita, M.; Nagano, T.; Schneider, U.; Hamada, T.; Ogawa, C.; Kobayashi, S. J. Am. Chem. Soc. 2008, 130, 2914.
[22] Wang, Y.; Wang, K.-H.; Su, Y.; Yang, Z.; Wen, L.; Liu, L.; Wang, J.; Huang, D.; Hu, Y. J. Org. Chem. 2018, 83, 939.
Outlines

/