Construction of 3,4-Disubstituted-3-(difluoromethyl)pyrazoles

  • Zeng Junliang ,
  • Xu Zhihong ,
  • Ma Junan
Expand
  • a School of Chemistry and Chemical Engineering, Xuchang University, Henan 461000;
    b Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Department of Chemistry, Tianjin University, Tianjin 300072

Received date: 2019-12-18

  Revised date: 2020-02-03

  Online published: 2020-03-04

Supported by

Project supported by the Key Project of Education Department of Henan Province (Nos. 20A150039).

Abstract

The CHF2 moiety has been widely utilized in the design of pharmaceuticals and agrochemicals, because this group can act as hydrogen-bonding donor to improve the binding selectivity of biologically active compounds, as a bioisostere to substitute for methyl, methoxy, hydroxy, amino and thiol groups, and as a lipophilic regulator to improve the liposolubility of the active compounds. For example, 3-difluoromethylpyrazole scaffolds are present in many organic compounds that exhibit important biological activities. In this content, there are nearly ten kinds of pesticide molecules on the market that contain 3,4-disubstituted-3-(difluoromethyl)pyrazole units, with annual sales of up to one billion dollars. In this review, the methods of construction of 3,4-disubstituted 3-difluoromethylpyrazoles will been briefly summarized that have been reported so far. Four different strategies including using fluorinated reagents as substrates, difluoroacetic acid and its derivatives as fluorine building blocks, difluorodiazonium and others as fluorine building blocks will be introduced.

Cite this article

Zeng Junliang , Xu Zhihong , Ma Junan . Construction of 3,4-Disubstituted-3-(difluoromethyl)pyrazoles[J]. Chinese Journal of Organic Chemistry, 2020 , 40(5) : 1105 -1116 . DOI: 10.6023/cjoc201912024

References

[1] (a) Yossi, Z.; Gali, S. M.; Dina, Y.; Anat, B.; Dafna, A.; Daniele, M.; Shlomi, E.; Shahaf, K.; Nissan, A.; Moran, M.; Eytan, G.; Sigal, S. J. Med. Chem. 2019, 62, 5628.
(b) Dai, J.-L.; Lei, W.-L.; Liu, Q. Acta Chim. Sinica 2019, 77, 911(in Chinese). (戴建玲, 雷文龙, 刘强, 化学学报, 2019, 77, 911.)
(c) Fu, X.-P.; Xiao, Y.-L.; Zhang, X.-G. Chin. J. Chem. 2018, 36, 143.
(d) Damian, E. Y.; Sebastian, B. V.; Postigo. A. Chem.-Eur. J. 2017, 23, 14676.
(e) Ni, C.-F.; Zhu, L.-G.; Hu, J.-B. Acta Chim. Sinica 2015, 73, 90(in Chinese). (倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90.)
(f) Yang, Y.; You, Z.; Qing, F. Acta Chim. Sinica 2012, 70, 2323(in Chinese). (杨义, 游正伟, 卿凤翎, 化学学报, 2012, 70, 2323.)
(g) O'Hagan, D.; Wang, Y.; Skibinski, M.; Slawin, A. M. Z. Pure Appl. Chem. 2012, 84, 1587.
(h) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
(i) Erichson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626.
[2] Mcloughlin, J. I.; Louis, St.; Metz, S. C. US 2005223526, 1992.
[3] (a) Zierke, T.; Maywald, V.; Rack, M.; Smidt, S. P.; Keil, M.; Wolf, B.; Koradin, C. WO 2009133179, 2009.
(b) Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Doctor, S.; Greveto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Gregory, S. A.; Icoboldt, C. M.; Perkus, W. E.; Seibert, K. A.; Veenhuizen, W.; Zhang, Y. Y.; Isakson, P. C. J. Med. Chem. 1997, 40, 1347.
(c) Liu, X.-H.; Zhao, W.; Shen, Z.-H.; Xing, J.-H.; Xu, T.-M.; Peng, W.-L. Eur. J. Med. Chem. 2017, 125, 881.
[4] (a) Qiu, S.-S.; Bai, Y.-L. Modern Agrochem. 2014, 6, 1(in Chinese). (仇是胜, 柏亚罗, 现代农药, 2014, 6, 1.)
(b) Qiu, S.-S.; Bai, Y.-L. Modern Agrochem. 2015, 14, 1(in Chinese). (仇是胜, 柏亚罗, 现代农药, 2015, 14, 1.)
[5] Xiao, H. World Pestic. 2007, 39, 12(in Chinese). (筱禾, 世界农药, 2007, 39, 12.)
[6] Lantzsch, R.; Pazenok, S.; Memmel, F. WO 2005044804, 2005.
[7] Syngenta Participations AG EP 2008996, 2008.
[8] Kremsner, J. M.; Rack, M.; Pilger, C.; Kappe, C. O. Tetrahedron Lett. 2009, 50, 3665.
[9] Bolea, C.; Celanire, S.; Boudou, C.; Tang, L.; Rocher, J. P.; Liverton, N. J. WO 2012009009, 2012.
[10] Fan, X.-B.; Lin, X.-J.; Xu, X.-M.; Huang, C.; Shen, Q.-F. CN 104016920, 2014.
[11] Sakamoto, R.; Kashiwagi, H.; Maruoka, K. Org. Lett. 2017, 19, 5126.
[12] Zhang, Y.; Chen, Z.; Nie, J.; Zhang, F.-G.; Ma, J.-A. J. Org. Chem. 2019, 84, 7148.
[13] (a) Liu, C.-B.; Meng, W.; Li, F.; Wang, S.; Nie, J.; Ma, J.-A. Angew. Chem., Int. Ed. 2012, 51, 6227.
(b) Wang, S.; Nie, J.; Zheng, Y.; Ma, J.-A. Org. Lett. 2014, 16, 1606.
(c) Zhang, F.-G.; Wei, Y.; Yi, Y. P.; Ma, J.-A. Org. Lett. 2014, 16, 3122.
(d) Chen, Z.; Zheng, Y.; Ma, J.-A. Angew. Chem., Int. Ed. 2017, 56, 4569.
[14] Li, L.-F.; Xu, G. Y.; Zhao, D.-J.; Chen, M.; Wang, Y. Fine Chem. Intermed. 2011, 43(6), 17.
[15] Oharu, K.; Kumai, S. EP 0694523, 1995.
[16] Nishimiya, T.; Fuku, A.; Okamoto, S. WO 2008078479, 2008.
[17] Talley, J. J.; Penning, T. D.; Collins, P. W.; Rogier, D. J.; Malecha, J. W.; Miyachiro, J. M.; Bertenshaw, S. R.; Khanna, I. K.; Granets, M. J.; Rogers, R. S.; Carter, J. S.; Docter, S. H.; Yu, S. S. WO 9515316, 1995.
[18] (a) Singh, S. P.; Kumar, D.; Batra, H.; Naithani, R.; Rozas, I.; Elguero, J. Can. J. Chem. 2000, 78, 1109.
(b) Sloop, J. C. Bumgardner, C. L.; Loehle, W. D. J. Fluorine Chem. 2002, 118, 135.
[19] Norris, T.; Colon-Cruz, R.; Ripin, D. H. B. Org. Biomol. Chem. 2005, 3, 1844.
[20] Gosselin, F.; O'Shea, P. D.; Webster, R. A.; Reamer, R. A.; Tillyer, R. D.; Grabowski, E. J. J. Synlett 2006, 19, 3267.
[21] Gewehr, M.; Muller, B.; Grote, T.; Grammenos, W.; Schwogler, A.; Rheinheimer, J.; Blettner, G.; Schafer, P.; Schieweck, F.; Werner, F.; Rether, J.; Strathmann, S.; Stierl, R.; Scherer, M. WO 2005123690, 2005.
[22] (a) Wu, Z.-B.; Hu, D.-Y.; Kuang, J.-Q.; Cai, H.; Wu, S. X.; Xue, W. Molecules 2012, 17, 14205.
(b) Sun, J.-L.; Zhou, Y.-M. Molecules 2015, 20, 4383.
(c) Liu, X.-H.; Zhao, W.; Shen, Z.-H.; Xing, J.-H.; Xu, T.-M.; Peng, W.-L. Eur. J. Med. Chem. 2017, 125, 881.
(d) Qiao, L.; Zhai, Z.-W.; Cai, P.-P.; Tan, C.-X.; Weng, J.-Q.; Han, L.; Liu, X.-H.; Zhang Y.-G. J. Heterocycl. Chem. 2019, 56, 2536.
[23] Dochnahl, M.; Keil, M.; Gotz, R. WO 2011054733, 2010.
[24] Huang, X.-Y.; Shang, Y.; Wang, L.-P.; Wang, W. Agrochemicals 2018, 57(10), 703.
[25] Rack, M.; Smidt, S. P.; Lohr, S.; Keil, M.; Dietz, J.; Rheinheimer, J.; Grote, T.; Zierke, T.; Lohmann, J. K.; Sukopp, M. WO 2008053043, 2008.
[26] Bowden, M.; Gott, B. D.; Jackson, D. A. WO 2009000442, 2009.
[27] Iaroshenko, V. O.; Specowius, V.; Vlach, K.; Vilches-Herrera, M.; Ostrovskyi, D.; Mkrtchyan, S.; Villinger, A.; Langer, P. Tetrahedron 2011, 67, 5663.
[28] Braun, M. J.; Jaunzems, J. WO 2012010692, 2012.
[29] Sosnovskikh, V. Y.; Irgashev, R. A. Moshkin, V. S. Kodess, M. I. Russ. Chem. Bull. 2008, 57, 2146.
[30] Lantzsch, R.; Wolfgang, J.; Pazenok, S. WO 2005042468, 2004.
[31] Zierke, T.; Maywald, V.; Rack, M.; Smidt, S. P.; Keil, M.; Wolf, B.; Koradin, C. US 20110040096, 2009.
[32] Zierke, T.; Rheinheimer, J.; Rack, M.; Smidt, S. P.; Altenhoff, A. G.; Schmidt-Leithoff, J.; Challand, N. WO 2008145740, 2008.
[33] Pazenok, S.; Lui, N.; Heinrich, J. D.; Wollner, T. WO 2009106230, 2009.
[34] Wang, M.-C.; Li, Q.-Y.; Luo, Z.-B. CN 107663172, 2016.
[35] Gilman, H.; Jones, R. G. J. Am. Chem. Soc. 1943, 65, 1458.
[36] (a) Morandi, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50, 9085.
(b) Morandi, B.; Carreira, E. M. Org. Lett. 2011, 13, 5984.
(c) Morandi, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2010, 49, 938.
(d) Artamonov, O. S.; Mykhailiuk, P. K.; Voievoda, N. M.; Volochnyuk, D. M.; Komarov, I. V. Synthesis 2010, 443.
(e) Li, F.; Nie, J.; Sun, L.; Ma, J.-A. Angew. Chem., Int. Ed. 2013, 52, 6255.
(f) Peng, X.; Xiao, M.-Y.; Zeng, J.-L.; Zhang, F.-G.; Ma, J.-A. Org. Lett. 2019, 21, 4808.
(g) Zhang, Z.-Q.; Zheng, M.-M.; Xue, X.-S.; Marek, I.; Zhang, F.-G.; Ma, J.-A. Angew Chem., Int. Ed. 2019, 58, 18191.
[37] Mykhailiuk, P. K. Angew Chem., Int. Ed. 2015, 54, 6558.
[38] Mertens, L.; Hock, K. J.; Koenigs, R. M. Chem.-Eur. J. 2016, 22, 9542.
[39] Li, J.; Yu, X.-L.; Cossy, J.; Lv, S.-Y.; Mykhailiuk, P. K.; Wu, Y. Eur. J. Org. Chem. 2017, 266.
[40] Britton, J.; Jamison, T. F. Angew. Chem., Int. Ed. 2017, 56, 8823.
[41] Zeng, J.-L.; Chen, Z.; Zhang, F.-G.; Ma, J.-A. Org. Lett. 2018, 20, 4562.
[42] Linderman, R. J.; Kirollos, K. S. Tetrahedron Lett. 1989, 30, 2049.
[43] (a) Hamper, B. C. J. Fluorine Chem. 1990, 48, 123.
(b) Hamper, B. C.; Kurtzweil, M. L.; Beck, J. P. J. Org. Chem. 1992, 57, 5680.
[44] (a) England, D. C.; Melby, L. R.; Dietrich, M. A.; Lindsey, R. V. J. Am. Chem. Soc. 1960, 82(19), 5116.
(b) Wakselman, C. Tordeux, M. J. Chem. Soc., Chem. Commun. 1975, 956.
(c) Sergiy P.; Florence G.; Grégory L.; Norbert L.; Jean-Pierre, V,; Frédéric, R. L. Eur. J. Org. Chem. 2013, 4249.
(d) Etienne, S.; Baptiste, R.; Armen, P.; Jean-Pierre, V.; Sergii, P.; Frédéric, R. L. Org. Lett. 2015, 17(18), 4510.
(e) Etienne, S. Grégory, L.; Jean-Pierre, V.; Norbert, L.; Sergiy, P.; Frédéric, R. L. Eur. J. Org. Chem. 2018, 3792.
[45] Nett, M.; Grote, T.; Lohmann, J. K.; Dietz, J.; Smidt, S. P.; Rack, M.; Zierke, T. WO 2008152138, 2008.
[46] Pazenok, S.; Lui, N.; Neeff, A. WO 2008022777, 2008.
[47] Nett, M.; Grote, T.; Lohmann, J. K.; Dietz, J.; Smidt, S. P.; Rack, M.; Zierke, T. US 2010084994, 2010.
Outlines

/