C—N Coupling Reactions between Benzophenone Hydrazone and Aryl Chlorides and Boronic Acids

  • Yao Dandan ,
  • Zhang Jinli ,
  • Xu Liang
Expand
  • Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003

Received date: 2019-12-26

  Revised date: 2020-02-21

  Online published: 2020-03-06

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21603150, 21963010).

Abstract

Palladium catalyzed Buchwald-Hartwig reactions between aryl halides and N-nucleophiles, and the copper catalyzed Chan-Evans-Lam reactions between aryl boronic acids and N-nucleophiles are all effective methods for constructing C-N bonds. Herein, under palladium acetate/tert-butanol system or copper acetate/dichloromethane system, benzophenone hydrazone can react with aryl chlorides and aryl boronic acids to afford corresponding aryl hydrazones, respectively. The obtained products are easily hydrolyzed to form aryl hydrazines, thus providing an indirect pathway to access aryl hydrazines from relatively less toxic reagents.

Cite this article

Yao Dandan , Zhang Jinli , Xu Liang . C—N Coupling Reactions between Benzophenone Hydrazone and Aryl Chlorides and Boronic Acids[J]. Chinese Journal of Organic Chemistry, 2020 , 40(6) : 1673 -1679 . DOI: 10.6023/cjoc201912038

References

[1] Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875.
[2] Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. Chem. Rev. 2011, 111, 6984.
[3] (a) Xu, Z.; Wang, D.-S.; Yu, X.; Yang, Y.; Wang, D. Adv. Synth. Catal. 2017, 359, 3332.
(b) Yang, Y.; Qin, A.; Zhao, K.; Wang, D.; Shi, X. Adv. Synth. Catal. 2016, 358, 1433.
(c) Hu, X.; Yang, B.; Yao, W.; Wang, D. Chin. J. Org. Chem. 2018, 38, 3296(in Chinese). (胡昕宇, 杨伯斌, 姚玮, 王大伟, 有机化学, 2018, 38, 3296.)
(d) Huang, R.; Yang, Y.; Wang, D.-S.; Zhang, L.; Wang, D. Org. Chem. Front. 2018, 5, 203.
(e) Wu, Q.; Pan, L.; Du, G.; Zhang, C.; Wang, D. Org. Chem. Front. 2018, 5, 2668.
[4] (a) Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey, R. W.; Hannick, S. M.; Gherke, L.; Credo, R. B.; Hui, Y.-H.; Marsh, K.; Warner, R.; Lee, J. Y.; Zielinski-Mozng, N.; Frost, D.; Rosenberg, S. H.; Sham, H. L. J. Med. Chem. 2002, 45, 169.
(b) Köhling, P.; Schmidt, A. M.; Eilbracht, P. Org. Lett. 2003, 5, 3213.
(c) Kuethe, J. T.; Wong, A.; Qu, C.; Smitrovich, J.; Davies, I. W.; Hughes, D. L. J. Org. Chem. 2005, 70, 2555.
(d) Jukes, R. T. F.; Bozic, B.; Hartl, F.; Belser, P.; De Cola, L. Inorg. Chem. 2006, 45, 8326.
(e) Zhang, T.; Bao, W. J. Org. Chem. 2013, 78, 1317.
(f) Dubost, E.; Stiebing, S.; Ferrary, T.; Cailly, T.; Fabis, F.; Collot, V. Tetrahedron 2014, 70, 8413.
(g) Wei, W.; Wang, Z.; Yang, X.; Yu, W.; Chang, J. Adv. Synth. Catal. 2017, 359, 3378.
[5] (a) Schlummer, B.; Scholz, U. Adv. Synth. Catal. 2004, 346, 1599.
(b) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534.
(c) Ruiz-Castillo, P.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564.
[6] (a) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2090.
(b) Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 10251.
(c) Mauger, C.; Mignani, G. Adv. Synth. Catal. 2005, 347, 773.
[7] (a) Wang, Z.; Skerlj, R. T.; Bridger, G. J. Tetrahedron Lett. 1999, 40, 3543.
(b) Arterburn, J. B.; Rao, K. V.; Ramdas, R.; Dible, B. R. Org. Lett. 2001, 3, 1351.
(c) Lim, Y.-K.; Lee, K.-S.; Cho, C.-G. Org. Lett. 2003, 5, 979.
(d) Halland, N.; Nazaré, M.; Alonso, J.; R'Kyek, O.; Lindenschmidt, A. Chem. Commun. 2011, 47, 1042.
[8] (a) Lundgren, R. J.; Stradiotto, M. Angew. Chem., Int. Ed. 2010, 49, 8686.
(b) DeAngelis, A.; Wang, D.-H.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 3434.
[9] Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.
(b) Bhunia, S.; Pawar, G. G.; Kumar, S. V.; Jiang, Y.; Ma, D. Angew. Chem., Int. Ed. 2017, 56, 16136.
[10] (a) Wolter, M.; Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3, 3803.
(b) Lam, M. S.; Lee, H. W.; Chan, A. S. C.; Kwong, F. Y. Tetrahedron Lett. 2008, 49, 6192.
(c) Jiang, L.; Lu, X.; Zhang, H.; Jiang, Y.; Ma, D. J. Org. Chem. 2009, 74, 4542.
(d) Xiong, X.; Jiang, Y.; Ma, D. Org. Lett. 2012, 14, 2552.
[11] Chen, J.; Zhang, Y.; Hao, W.; Zhang, R.; Yi, F. Tetrahedron 2013, 69, 613.
[12] (a) Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 6621.
(b) Mauger, C. C.; Mignani, G. A. Org. Process Res. Dev. 2004, 8, 1065.
(c) Lefebvre, V.; Cailly, T.; Fabis, F.; Rault, S. J. Org. Chem. 2010, 75, 2730.
(d) Goodyear, A.; Linghu, X.; Bishop, B.; Chen, C.; Cleator, E.; McLaughlin, M.; Sheen, F. J.; Stewart, G. W.; Xu, Y.; Yin, J. Org. Process Res. Dev. 2012, 16, 605.
(e) Wu, W.; Fan, X.-H.; Zhang, L.-P.; Yang, L.-M. RSC Adv. 2014, 4, 3364.
(f) Chen, Z.; Huo, Y.; An, P.; Wang, X.; Song, C.; Ma, Y. Org. Chem. Front. 2016, 3, 1725.
[13] (a) Shen, Q.; Shekhar, S.; Stambuli, J. P.; Hartwig, J. F. Angew. Chem., Int. Ed. 2005, 44, 1371.
(b) Tardiff, B. J.; Stradiotto, M. Eur. J. Org. Chem. 2012, 2012, 3972.
[14] (a) Qiao, J.; Lam, P. Synthesis 2010, 829.
(b) Sanjeeva Rao, K.; Wu, T.-S. Tetrahedron 2012, 68, 7735.
(c) Corbet, J.-P.; Mignani, G. Chem. Rev. 2006, 106, 2651.
(d) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.
(e) Ma, X. P.; Liu, F. P.; Mo, D. L. Chin. J. Org. Chem. 2017, 37, 1069(in Chinese). (马小盼, 刘凤萍, 莫冬亮, 有机化学, 2017, 37, 1069.)
[15] (a) Liu, S.; Zu, W.; Zhang, J.; Xu, L. Org. Biomol. Chem. 2017, 15, 9288.
(b) Liu, S.; Xu, L. Asian J. Org. Chem. 2018, 7, 1856.
(c) Zu, W.; Liu, S.; Jia, X.; Xu, L. Org. Chem. Front. 2019, 6, 1356.
(d) Liang, X.; Xu, L.; Li, C.; Jia, X.; Wei, Y. Tetrahedron 2019, 75, 721.
(e) Liu, S.; Xu, L.; Wei, Y. J. Org. Chem. 2019, 84, 1596.
[16] (a) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.
(b) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27.
[17] Li, X.; He, L.; Chen, H.; Wu, W.; Jiang, H. J. Org. Chem. 2013, 78, 3636.
Outlines

/