Progress in Synthesis and Properties of High Energy Density Compounds Regulated by N—F Bond

  • Zhai Lianjie ,
  • Zhang Junlin ,
  • Zhang Jiarong ,
  • Wu Minjie ,
  • Bi Fuqiang ,
  • Wang Bozhou
Expand
  • a Xi'an Modern Chemistry Research Instritute, Xi'an 710065;
    b State Key Laboratory of Fluorine & Nitrogen Chemical, Xi'an 710065

Received date: 2020-01-12

  Revised date: 2020-02-27

  Online published: 2020-03-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 21805224).

Abstract

Compared with the traditional N-O bond-based energetic materials, N-F bond-regulated energetic materials have received worldwide research interest due to their special features of high density, high specific impulse, and high heat release upon combustion with metals. The N-F bond-regulated energetic materials are classified as N-F azoles, (difluoroamino)dinitromethyl-substituted derivatives, gem-bis(difluoramino)-substituted derivatives, and difluoroamino polymers according to their structural characteristics. The recent developments of N-F bond and difluoramino (NF2) energetic derivatives are reviewed. The construction methodologies of N-F bond and difluoroamino groups as well as the synthetic routes to their energetic derivatives are emphatically reviewed. Moreover, the physicochemical and energetic properties of some typical compounds are briefly introduced. It will be the inevitable trend to develop effective, safe, and simple N-F bond and difluoraminiation preparation method, and novel high-performing N-F bond-based azoles and cyclic difluoramino-nitramines with moderate sensitivities and stable structures.

Cite this article

Zhai Lianjie , Zhang Junlin , Zhang Jiarong , Wu Minjie , Bi Fuqiang , Wang Bozhou . Progress in Synthesis and Properties of High Energy Density Compounds Regulated by N—F Bond[J]. Chinese Journal of Organic Chemistry, 2020 , 40(6) : 1484 -1501 . DOI: 10.6023/cjoc202001018

References

[1] Gao, H.; Shreeve, J. M. Chem. Rev. 2011, 111, 7377.
[2] Klapötke, T. M. Chemistry of High-energy Materials, 2nd ed., Walter de Gruyter, Berlin, 2012.
[3] Badgujar, D. M.; Talawar, M. B.; Asthana, S. N.; Mahulikar, P. P. J. Hazard. Mater. 2008, 151, 289.
[4] Xue, Q.; Bi, F. Q.; Zhang, J. R.; Zhang, J. L.; Wang, B. Z.; Zhang, S. R. Chin. J. Org. Chem. 2019, 39, 1244(in Chinese). (薛琪, 毕福强, 张家荣, 张俊林, 王伯周, 张生勇, 有机化学, 2019, 39, 1244.)
[5] Wang, Y.; Liu, Y. J.; Song, S. W.; Yang, Z. J.; Qi, X. J.; Wang, K. C.; Liu, Y.; Zhang, Q. H.; Tian, Y. Nat. Commun. 2018, 9, 2444.
[6] Tang, Y. X.; Kumar, D.; Shreeve, J. M. J. Am. Chem. Soc. 2017, 139, 13684.
[7] Zhai, L. J.; Bi, F. Q.; Huo, H.; Luo, Y. F.; Li, X. Z.; Chen, S. P.; Wang, B. Z. Front. Chem. 2019, 7, 559.
[8] Zhang, J. R.; Bi, F. Q.; Lian, P.; Zhang, J. L.; Wang, B. Z. Chin. J. Org. Chem. 2017, 37, 2736(in Chinese). (张家荣, 毕福强, 廉鹏, 张俊林, 王伯周, 有机化学, 2017, 37, 2736.)
[9] Li, Y. L.; Xue, M.; Wang J. L.; Cao, D. L.; Ma, Z. L. Chin. J. Org. Chem. 2016, 36, 1528(in Chinese). (李云路, 薛梅, 王建龙, 曹端林, 马忠亮, 有机化学, 2016, 36, 1528.)
[10] Zhou, J.; Zhang, J. L.; Ding, L.; Bi, F. Q.; Wang, B. Z. Chin. J. Energ. Mater. 2019, 27, 708(in Chinese). (周静, 张俊林, 丁黎, 毕福强, 王伯周, 含能材料, 2019, 27, 708.)
[11] Zhou, J.; Zhang, J. L.; Ding, L.; Bi, F. Q.; Wang, B. Z. Chin. J. Explos. Propellants 2019, 42, 608(in Chinese). (冯晓军, 薛乐星, 曹芳洁, 刘谦, 李欣, 火炸药学报, 2019, 42, 608.)
[12] Zhai, L. J.; Bi, F. Q.; Luo, Y. F.; Wang, N. X.; Zhang, J. L.; Wang, B. Z. Sci. Rep. 2019, 9, 4321.
[13] Xu, Y. G.; Shen, C.; Lin, Q. H.; Wang, P. C.; Jiang, C.; Lu, M. J. Mater. Chem. A 2016, 4, 17791.
[14] Barton, L. M.; Edwards, J. T.; Johnson, E. C.; Bukowski, E. J.; Sausa, R. C.; Byrd, E. F. C.; Orlicki, J. A.; Sabatini, J. J.; Baran, P. S. J. Am. Chem. Soc. 2019, 141, 12531.
[15] Zhai, L. J.; Bi, F. Q.; Luo, Y. F.; Sun, L.; Huo, H.; Zhang, J. C.; Zhang, J. L.; Wang, B. Z.; Chen, S. P. Chem. Eng. J. 2020, 391, 123573.
[16] Vishnevskiy, Y. V.; Tikhonov, D.; Schwabedissen, J.; Stammler, H-G.; Moll, R.; Krumm, B.; Klapötke, T. M.; Mitzel, N. W. Angew. Chem., Int. Ed. 2017, 56, 9619.
[17] Yu, Q.; Yin, P.; Zhang, J. H.; He, C. L.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. J. Am. Chem. Soc. 2017, 139, 8816.
[18] Lukin, K. A.; Li, J.; Eaton, P. E.; Kanomata, N.; Hain. J.; Punzalan, E.; Gilardi, R. J. Am. Chem. Soc. 1997, 119, 9591.
[19] Zhang, M. X.; Eaton, P. E.; Gilardi, R. Angew. Chem., Int. Ed. 2000, 39, 401.
[20] Gong, X. B.; Sun, C. H.; Pang, S. P.; Zhang, J.; Li, Y. C.; Zhao, X. Q. Chin. J. Org. Chem. 2012, 32, 486(in Chinese). (公绪滨, 孙成辉, 庞思平, 张静, 李玉川, 赵信岐, 有机化学, 2012, 32, 486.)
[21] Nair, U. R.; Sivabalan, R.; Gore, G. M.; Geetha, M.; Asthana S. N.; Singh, H. Combust., Explos. Shock Waves 2005, 41, 121.
[22] Ammon, H. L. Struct. Chem. 2001, 12, 205.
[23] Feng, Z. G. Prog. Chem. 2000, 12, 171(in Chinese). (冯增国, 化学进展, 2000, 12, 171.)
[24] Liu, H.; Zhang, Y. J.; Zhang, L. Y.; Zheng, W. F.; Pan, R. M. Chin. J. Explos. Propellants 2019, 42, 363(in Chinese). (刘卉, 张英杰, 张路遥, 郑文芳, 潘仁明, 火炸药学报, 2019, 42, 363.)
[25] Yetter, R. A.; Dryer, F. L.; Rabitz, H.; Brown, R. C.; Kolb, C. E. Combust. Flame 1998, 112, 387.
[26] http://webbook.nist.gov/chemistry/
[27] Valluri, S. K.; Schoenitz, M.; Dreizin, E. Def. Technol. 2019, 15, 1.
[28] Li, S. W.; Zhao, F. Q.; Yuan, C.; Luo, Y.; Gao, Y. J. Solid Rocket Technol. 2002, 25, 36(in Chinese). (李上文, 赵凤起, 袁潮, 罗阳, 高茵, 固体火箭技术, 2002, 25, 36.)
[29] Chapman, R. D. Struct. Bonding 2007, 125, 123.
[30] Li, H.; Qin, Y. J.; Li, J. H.; Pan, R. M.; Wang, W. J. Chem. Bull. 2012, 75, 1076(in Chinese). (李欢, 秦叶军, 李金华, 潘仁明, 王万军, 化学通报, 2012, 75, 1076.)
[31] Klapötke, T. M. J. Fluorine Chem. 2006, 127, 679.
[32] Chen, J. F.; Yu, Y.; Li, Y. C.; Pang, S. P. J. Fluorine Chem. 2018, 205, 35.
[33] Ruff, O.; Giese, M. Eur. J. Inorg. Chem. 1936, 69, 598.
[34] Davenas, A. J. Propul. Power 2003, 19, 1108.
[35] Petry, R. C.; Freeman, J. P. J. Org. Chem. 1967, 32, 4034
[36] Coon, C. L.; Ross, D. L. US 3732288, 1973.
[37] Reed, S. F.; Shoults, R. D. J. Org. Chem. 1972, 37, 3326.
[38] Coon, C. L.; Ross, D. L. US 3714254, 1973.
[39] Wiener, C.; Tyler, W. E. US 4128583, 1978.
[40] Zheng, Y. Y.; Zhou, J. Z.; Zhou, D. L.; Zhang, M. N. Acta Armamentarii 1988, 1, 59(in Chinese). (郑远洋, 周继璋, 周大赉, 张明南, 兵工学报, 1988, 1, 59.)
[41] Wang, W. J.; Li, H.; Pan, R. M.; Zhu, W. H. Chin. J. Org. Chem. 2019, 39, 170(in Chinese). (王万军, 李欢, 潘仁明, 朱卫华, 有机化学, 2019, 39, 170.)
[42] Li, H.; Zhang, L. Y.; Pan, R. M.; Wang, W. J. Chin. J. Explos. Propellants. 2012, 35, 37(in Chinese). (李欢, 张路遥, 潘仁明, 王万军, 火炸药学报, 2012, 35, 37.)
[43] Zhang, M. Q.; Liu, H. Y.; Gao, B. Z.; Zhang, L.; Kang, L.; Zhang, K. R. Chin. J. Energ. Mater. 2012, 20, 314(in Chinese). (张明权, 刘红雨, 高宝柱, 张磊, 康玲, 张可人, 含能材料, 2012, 20, 314.)
[44] Laali, K. K.; Tanaka, M.; Forohar, F.; Cheng, M.; Fetzer, J. C. J. Fluorine Chem. 1998, 91, 185.
[45] Dalinger, I. L.; Shkineva, T. K.; Vatsadze, I. A.; Popova, G. P.; Shevelev, S. A. Mendeleev Commun. 2011, 21, 48.
[46] Grakauskas, V.; Baum, K. J. Org. Chem. 1969, 34, 2840.
[47] Chapman, R. D.; Davis, M. C.; Gilardi, R. Synth. Commun. 2003, 35, 4173.
[48] Sharts, C. M. J. Org. Chem. 1968, 33, 1008.
[49] Mcpake, C. B.; Murray, C. B.; Sandford, G. Aust. J. Chem. 2013, 66, 145.
[50] Archibald, T. G.; Manser, G. E. US 5789617, 1998.
[51] Emelexus, H. J.; Shreeve, J. M.; Verma, R. D. Adv. Inorg. Chem. 1989, 33, 139.
[52] Klapdor, M. F.; Willner, H.; Poll, W.; Mootz, D. Angew. Chem. 1996, 108, 320.
[53] Freeman, J. P.; Kennedy, A.; Colburn, C. B. J. Am. Chem. Soc. 1960, 82, 5304.
[54] Petry, R. C.; Freeman, J. P. J. Am. Chem. Soc. 1961, 83, 3912.
[55] Graham, W. H.; Parker, C. O. J. Org. Chem. 1963, 28, 850.
[56] Grakauskas, V.; Baum, K. J. Am. Chem. Soc. 1970, 92, 2096.
[57] Banks, R. E.; Haszeldine, R. N.; Lalu, J. P. J. Chem. Soc., C 1966, 1514.
[58] Baum, K. J. Am. Chem. Soc. 1968, 90, 7083.
[59] Fokin, A. V.; Kosyrev, Y. M.; Shevchenko, V. I. Russ. Chem. Bull. 1983, 31, 1626.
[60] Graham, W. H.; Freeman, J. P. J. Am. Chem. Soc. 1967, 89, 716.
[61] Keith, J. N.; Douthart, R. J.; Sumida, W. K.; Solomon, I. J. Advanced Propellant Chemistry 1966, 141.
[62] Haiges, R.; Wagner, R.; Boatz, J. A.; Yousufuddin, M.; Etzkorn, M.; Surya Prakash, G. K.; Christe, K. O.; Chapman, R. D.; Welker, M. F.; Kreutzberger. C. B. Angew. Chem., Int. Ed. 2006, 45, 5179.
[63] Coon, C. L.; Hill, M. E.; Ross, D. L. US 3759998, 1973.
[64] Baum, K.; Grakauskas, V. US 4075246, 1978.
[65] Flanagan, G. E.; Frankel, M. B.; Witucki, E. F. US 4141910, 1979.
[66] Surya Prakash, G. K.; Etzkorn, M.; Olah, G. A.; Christe, K. O.; Schneidera, S.; Vij, A. Chem. Commun. 2002, 1712.
[67] Lustig, M.; Cady, G. H. Inorg. Chem. 1963, 2, 388.
[68] Fokin, A. K.; Studnev, Y. N.; Rapkin, A. L.; Kuznetsova, L. D. Russ. Chem. Bull. 1996, 45, 2547.
[69] Dalinger, I. L.; Shakhnes, A. K.; Monogarov, K. A.; Suponitsky, K. Y.; Sheremetev, A. B. Mendeleev Commun. 2015, 25, 429.
[70] Semenov, V. V.; Shevelev, S. A.; Bruskin, A. B.; Shakhnes, A. K.; Kuz'min, V. S. Chem. Heterocycl. Compd. 2017, 53, 728.
[71] Dalinger, I. L.; Kormanov, A. V.; Suponitsky, K. Yu.; Muravyev, N. V.; Sheremetev, A. B. Chem. Asian J. 2018, 13, 1165.
[72] Colburn, C. B.; Kennedy, A. J. Am. Chem. Soc. 1958, 80, 5004.
[73] Baumgardner, C. L.; Lawton, E. L. Acc. Chem. Res. 1974, 7, 14.
[74] Reed Jr, S. F. J. Org. Chem. 1968, 33, 1861.
[75] Petry, R. C.; Parker, C. O.; Johnson, F. A.; Stevens, T. E.; Freeman, J. P. J. Org. Chem. 1967, 32, 1534.
[76] Petry, R. C.; Freeman, J. P. J. Am. Chem. Soc. 1961, 83, 3912.
[77] Gakh, A. A.; Romaniko, S. V.; Ugrak, B. I.; Fainzilberg, A. A. Tetrahedron 1991, 47, 7447.
[78] Majumder, U.; Armantrout, J. R.; Williams, R. V.; Shreeve, J. M. J. Org. Chem. 2002, 67, 8435.
[79] Belter, R. K. J. Fluorine Chem. 2012, 132, 961.
[80] Dalinger, I. L.; Vinogradov, V. M.; Shevelev, S. A.; Kuz'min, V. S.; Arnautova, E. A.; Pivina, T. S. Propellants, Explos., Pyrotech. 1998, 23, 212.
[81] Fokin, A. K.; Studnev, Y. N.; Stolyarov, V. P.; Mel'nikov, A. A. Russ. Chem. Bull. 2000, 49, 949.
[82] Marsden, H. M.; Shreeve, J. M. Inorg. Chem. 1987, 26, 169.
[83] John, E. O.; Shreeve, J. M. Inorg. Chem. 1988, 27, 3100.
[84] John, E. O.; Kirchmeier, R. L.; Shreeve, J. M. J. Fluorine Chem. 1990, 47, 333.
[85] John, E. O.; Willett, R. D.; Scott, B.; Kirchmeier, R. L.; Shreeve, J. M. Inorg. Chem. 1989, 28, 893.
[86] Ye, C. f.; Gao, H. X.; Shreeve, J. M. J. Fluorine Chem. 2007, 128, 1410.
[87] Litvinov, B. V.; Fainzil'berg, A. A.; Pipekin, V. I.; Smirnov, S. P.; Loboiko, B. G.; Shevelev, S. A.; Nazin, G. M. Dokl. Akad. Nauk 1994, 336, 67.
[88] Khisamutdinov, G. K.; Shevelev, S. A. Russ. Chem. Bull., Int. Ed. 2001, 50, 736.
[89] Fokin, A. V.; Studnev, Y. N.; Kuznetsova, L. D. Dokl. Akad. Nauk 1996, 3, 358
[90] Fokin, A. V.; Studnev, Y. N.; Kuznetsova, L. Russ. Chem. Bull. 1996, 45, 1952.
[91] Zhang, M. Q.; Liu, H. Y,; Wei, X. C.; Zhang, L.; Kang, L. Chem. Propellants Polym. Mater. 2017, 15, 45(in Chinese). (张明权, 刘红雨, 韦兴存, 张磊, 康玲, 化学推进剂与高分子材料, 2017, 15, 45.)
[92] Frankel, M. B.; Witucki, E. F. US 4341712, 1982.
[93] Adolph, H. G.; Trivedi, N. J. US 6325876 B1, 2001.
[94] Ammon, H. L.; Holden, J. R.; Du, Z. Structure and Density Predictions for Energetic Materials, 2002. http://www.chem.missouri.edu/thompson/MURI02/extended/Ammon_MURI_extended_abstract_4.pdf.
[95] Baum, K.; Trivedi, N. J.; Lovato, J. M.; Iyer, V. K. Report NRO-1-1 (final), Fluorochem, Azusa, CA, 1993.
[96] Chapman, R. D.; Welker, M. F; Kreutzberger, C. B. J. Org. Chem. 1998, 63, 1566.
[97] Chapman, R. D.; Gilardi, R. D.; Welker, M. F.; Kreutzberger, C. B. J. Org. Chem. 1999, 64, 960.
[98] Chapman, R. D.; Groshens, T. J. US 7563889 B1, 2009.
[99] Chapman, R. D.; Groshens, T. J. US 8444783 B1, 2013.
[100] Axenrod, T.; Guan, X. P.; Sun, J. G.; Qi, L.; Chapman, R. D.; Gilardi, R. D. Tetrahedron Lett. 2001, 42, 2621.
[101] Chapman, R. D.; Nguyen, B. V. US 6310204 B1, 2001.
[102] Li, H. Ph.D. Dissertation, Nanjing University of Science & Technology, Nanjing, 2015 (in Chinese). (李欢, 博士论文, 南京理工大学, 南京, 2015.)
[103] Mei, Y. M.S. Thesis, Nanjing University of Science & Technology, Nanjing, 2016 (in Chinese). (梅莹, 硕士论文, 南京理工大学, 南京, 2016.)
[104] Archibald, T. G.; Manser, G. E. Immoos, J. E. US 5240311, 1995.
Outlines

/