Progress in Photoinduced Decarboxylative Radical Cross-Coupling of Alkyl Carboxylic Acids and Their Derivatives

  • Zhou Mingdong ,
  • Qin Pitao ,
  • Jing Like ,
  • Sun Jing ,
  • Du Haiwu
Expand
  • College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001

Received date: 2019-09-18

  Revised date: 2019-11-01

  Online published: 2020-04-02

Supported by

Project supported by the Doctoral Start-up Foundation of Liaoning Province (No. 20180540085).

Abstract

Alkyl carboxylic acids are among the most ubiquitous organic molecules found in nature. The reactions using abundant carboxylic acid and its derivatives as starting materials deserve widespread attention over the world. They are often easy to generate alkyl radical by photoredox catalysis under mild conditions for building various chemical bonds in organic chemistry. Based on the reaction modes, decarboxylation of alkylcarboxylic acids and their derivatives, the recent progress in decarboxylation of alkylcarboxylic acids and their derivatives under visible light is reviewed.

Cite this article

Zhou Mingdong , Qin Pitao , Jing Like , Sun Jing , Du Haiwu . Progress in Photoinduced Decarboxylative Radical Cross-Coupling of Alkyl Carboxylic Acids and Their Derivatives[J]. Chinese Journal of Organic Chemistry, 2020 , 40(3) : 598 -613 . DOI: 10.6023/cjoc201909030

References

[1] Lunbderg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Chem. Soc. Rev. 2014, 43, 2714.
[2] Morrill, L. C.; Smith, A. D. Chem. Soc. Rev. 2014, 43, 6214.
[3] Straathof, A. J. J. Chem. Rev. 2014, 114, 1871.
[4] (a) Sivaguru, P.; Wang, Z.; Zanoni, G.; Bi, X. Chem. Soc. Rev. 2019, 48, 2615.
(b) Wang, F.; Chen, P.; Liu, G. S. Acc. Chem. Res. 2018, 51, 2036.
(c) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A.; Lei, A. Chem. Rev. 2017, 117, 9016.
(d) Zhao, Y.; Liu, Z. Chin. J. Chem. 2018, 36, 455.
(e) Tan, F.; Yin, G. Chin. J. Chem. 2018, 36, 545.
(f) Cao, Y.; He, X.; Wang, N.; Li, H.; He, L.-N. Chin. J. Chem. 2018, 36, 644.
[5] (a) Wang, H.; Wu, P.; Zhao, X.; Zeng, J.; Wan, Q. Acta Chim. Sinica 2019, 77, 231(in Chinese). (王浩, 吴品儒, 赵祥, 曾静, 万谦, 化学学报, 2019, 77, 231.)
(b) Chen, Y.; Chang, L.; Zuo, Z. Acta Chim. Sinica 2019, 77, 794(in Chinese). (陈奕霖, 常亮, 左智伟, 化学学报, 2019, 77, 794.)
(c) Ye, S.; Wu, J. Acta Chim. Sinica 2019, 77, 814(in Chinese). (叶盛青, 吴劼, 化学学报, 2019, 77, 814.)
(d) Zhang, H.-H.; Yu, S. Acta Chim. Sinica 2019, 77, 832(in Chinese). (张洪浩, 俞寿云, 化学学报, 2019, 77, 832.)
(e) Ren, L.; Ran, M.; He, J.; Qian, Y.; Yao, Q. Chin. J. Org. Chem. 2019, 39, 1583(in Chinese). (任林静, 冉茂刚, 何佳芯, 钱燕, 姚秋丽, 有机化学, 2019, 39, 1583.)
[6] (a) Zhao, B.; Tan, H.; Chen, C.; Jiao, N.; Shi, Z. Chin. J. Chem. 2018, 36, 995.
(b) Yuan, Y.; Dong, W.; Gao, X.; Xie, X.; Curran, D.; Zhang, Z. Chin. J. Chem. 2018, 36, 1035.
(c) Li, C.; Qi, Z.; Yang, Q.; Qiang, X.-Y.; Yang, S.-D. Chin. J. Chem. 2018, 36, 1052.
(d) An, X.; Zhang, H.; Xu, Q.; Yu, L.; Yu, S. Chin. J. Chem. 2018, 36, 1147.
(e) Xu, W.; Dai, X.; Xu, H.; Weng, J. Chin. J. Org. Chem. 2018, 38, 2807(in Chinese). (徐雯秀, 戴小强, 徐涵靖, 翁建全, 有机化学, 2018, 38, 2807.)
(f) Ruan, L; Chen, C.; Zhang, X.; Sun, J. Chin. J. Org. Chem. 2018, 38, 3155(in Chinese). (阮利衡, 陈春欣, 张晓欣, 孙京, 有机化学, 2018, 38, 3155.)
[7] Sun, A.; C.; McAtee, R. C.; McClain, E. J.; Stephenson, C. R. J. Synthesis 2019, 51, 1063.
[8] Murarka, S. Adv. Synth. Catal. 2018, 360, 1735.
[9] Xuan, J.; Zhang, Z. G.; Xiao, W. J. Angew. Chem., Int. Ed. 2015, 54, 15632.
[10] Chu, L.; Ohta, C.; Zuo, Z.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 10886.
[11] Miyake, Y.; Nakajima, K.; Nishibayashi, Y. Chem. Commun. 2013, 49, 7854.
[12] Millet, A.; Lefebvre, Q.; Rueping, M. Chem.-Eur. J. 2016, 22, 13464.
[13] Ramirez, N.; Gonzalez-Gomez, J. Eur. J. Org. Chem. 2017, 2154.
[14] Chinzei, T.; Miyazawa, K.; Yasu, Y.; Koike, T.; Akita, M. RSC Adv. 2015, 5, 21297.
[15] Bloom, S.; Liu, C.; Kölmel, D.; Qiao, J.; Zhang, Y.; Poss, M.; Ewing, W.; MacMillan, D. W. C. Nat. Chem. 2018, 10, 205.
[16] Kölmel, D. K.; Loach, R. P.; Knauber, T.; Flanagan, M. E. ChemMedChem 2018, 13, 2159.
[17] Chen, J.-Q.; Chang, R.; Wei, Y.-L.; Mo, J.-N.; Wang, Z.-Y.; Xu, P.-F. J. Org. Chem. 2018, 83, 253.
[18] Xiao, T.; Li, L.; Zhou, L. J. Org. Chem. 2016, 81, 7908.
[19] Noble, A.; Mega, R. S.; Pflästerer, D.; Myers, E.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2018, 57, 2155.
[20] Guo, T.; Zhang, Y.; Fang, Y.; Jin, X.; Li, Y.; Li, R.; Li, X.; Cen, W.; Liu, X.; Tian, Z. Adv. Synth. Catal. 2018, 360, 1352.
[21] Yin, Y.; Dai, Y.; Jia, H.; Li, J.; Bu, L.; Qiao, B.; Zhao, X.; Jiang, Z. J. Am. Chem. Soc. 2018, 140, 6083.
[22] Okada, K.; Okamoto, K.; Morita, N.; Okubo, K.; Oda, M. J. Am. Chem. Soc. 1991, 113, 9401.
[23] Schnermann, N.; Overman, L. E. Angew. Chem., Int. Ed. 2012, 51, 9576.
[24] Pratsch,G.; Lackner, G. L.; Overman, L. E. J. Org. Chem. 2015, 80, 6025.
[25] Hu, C.; Chen, Y. Org. Chem. Front. 2015, 2, 1352.
[26] Schwarz, J.; König, B. Green Chem. 2016, 18, 4743.
[27] Jin, Y.; Yang, H.; Fu, H. Org. Lett. 2016, 18, 6400.
[28] Noble, A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 11602.
[29] Cao, H.; Jiang, H.; Feng, H.; Kwan, J.; Liu, X.; Wu, J. J. Am. Chem. Soc. 2018, 140, 16360.
[30] Zheng, C.; Chen, W.; Li, H.; Na, R.; Shang, R. Org. Lett. 2018, 20, 2559.
[31] Till, N. A.; Smith, R. T.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140, 5701.
[32] Zhang, J.; Yang, J.; Guo, L.; Duan, X. Chem.-Eur. J. 2017, 23, 10259.
[33] Xu, K.; Tan, Z.; Zhang, H.; Liu, J.; Zhang, S.; Wang, Z. Chem. Commun. 2017, 53, 10719.
[34] Wang, G.; Shang, R.; Fu, Y. Org. Lett. 2018, 20, 888.
[35] Koy, M.; Sandfort, F.; Tlahuext-Aca, A.; Quach, L.; Daniliuc, C.; Glorius, F. Chem.-Eur. J. 2018, 24, 4552.
[36] Jin, C.; Yan, Z.; Sun, B.; Yang, J. Org. Lett. 2019, 21, 2064.
[37] Dai, G.; Lai, S.; Luo, Z.; Tang, Z. Org. Lett. 2019, 21, 2269.
[38] Li, Y.; Ge, L.; Qian, B.; Babu, K. R.; Bao, H. Tetrahedron Lett. 2016, 57, 5677.
[39] Zhou, Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.; Xiao, W. Angew. Chem., Int. Ed. 2015, 54, 11196.
[40] Yang, J.; Zhang, J.; Qi, L.; Hu, C.; Chen, Y. Chem. Commun. 2015, 51, 5275.
[41] Tlahuext-Aca, A.; Garza-Sanchez, R.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 3708.
[42] Ge, L.; Li, Y.; Jian, W.; Bao, H. Chem.-Eur. J. 2017, 23, 11767.
[43] Quyang, X.; Li, Y.; Song, R.; Li, J. Org. Lett. 2018, 20, 6659.
[44] Tlahuext-Aca, A.; Garza-Sanchez, A.; Schäfer, M.; Glorius, F. Org. Lett. 2018, 20, 1546.
[45] Xia, Z.; Zhang, C.; Gao, Z.; Ye, S. Org. Lett. 2018, 20, 3496.
[46] Kong, W.; Yu, C.; An, H.; Song, Q. Org. Lett. 2018, 20, 349.
[47] Sha, W.; Deng, L.; Ni, S.; Mei, H.; Han, J.; Pan, Y. ACS Catal. 2018, 8, 7489.
[48] Chen, L.; Chao, C.; Pan, Y.; Dong, S.; Teo, Y.; Wang, J.; Tan, C. Org. Biomol. Chem. 2013, 11, 5922.
[49] Shu, C.; Mega, R. S.; Andreassen, B. J.; Noblem A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2018, 57, 15430.
[50] He, Z.; Bae, M.; Wu, J.; Jamison, T. F. Angew. Chem., Int. Ed. 2014, 53, 14451.
[51] Yu, Y.; Yuan, W.; Huang, H.; Cai, Z.; Liu, P.; Sun, P. J. Org. Chem. 2018, 83, 1654.
[52] Xie, J.; Xu, P.; Li, H.; Xue, Q.; Jin, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 5672.
[53] Tang, Q.; Liu, X.; Liu, S.; Xie, H.; Liu, W.; Zeng, J.; Cheng, P. RSC Adv. 2015, 5, 89009.
[54] Sha, W.; Ni, S.; Han, J.; Pan, Y. Org. Lett. 2017, 19, 5900.
[55] Yao, S.; Zhang, K.; Zhou, Q.; Zhao, Y.; Shi, D.; Xiao, W. Chem. Commun. 2018, 54, 8096.
[56] Kachkovskyi, G.; Faderl, C.; Reiser, O. Adv. Synth. Catal. 2013, 355, 2240.
[57] Yang, J.; Zhang, J.; Zhang, J.; Duan, X.; Gao, L. J. Org. Chem. 2018, 83, 1598.
[58] Liu, L.; Dong, J.; Yan, Y.; Yin, S.; Han, L.; Zhou, Y. Chem. Commun. 2019, 55, 233.
[59] Garza-Sanchez, A.; Tlahuext-Aca, A.; Glorius, F. ACS Catal. 2017, 56, 12336.
[60] Koeller, J.; Gandeepan, P.; Ackermann, L. Synthesis 2019, 51, 1284.
[61] Tian, W.-F.; Hu, C.-H.; He, K.-N.; He, X.-Y.; Li, Y. Org. Lett. 2019, 21, 6930.
[62] Wang, B.; Li, P.; Miao, T.; Zou, L.; Wang, L. Org. Biomol. Chem. 2019, 17, 115.
[63] Zhang, X.-Y.; Weng, W.-Z.; Liang, H.; Yang, H.; Zhang, B. Org. Lett. 2018, 20, 4686.
[64] Chen, W.; Shang, R.; Fu, Y. ACS Catal. 2017, 7, 907.
[65] Cheng, W.-M.; Shang, R.; Fu, M.-C.; Fu, Y. Chem.-Eur. J. 2017, 23, 2537.
[66] Proctor, R. S. J.; Davis, H. J.; Phipps, R. J. Science 2018, 360, 419.
[67] Liu, X.; Liu, Y.; Chai, G.; Qiao, B.; Zhao, X.; Jiang, Z. Org. Lett. 2018, 20, 6298.
[68] Sherwood, T. C.; Li, N.; Yazdani, A. N.; Murali Dhar, T. G. J. Org. Chem. 2018, 83, 3000.
[69] Kammer, L. M.; Rahman, A.; Opatz, T. Molecules 2018, 23, 764.
[70] Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Science 2019, 363, 1429.
[71] Zuo, Z.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 5257.
[72] Lang, S.; O’Nele, K.; Tunge, J. J. Am. Chem. Soc. 2014, 136, 13606.
[73] Li, J.; Lefebvre, Q.; Yang, H.; Zhao, Y.; Fu, H. Chem. Commun. 2017, 53, 10299.
[74] Yang, H.; Tian, C.; Qiu, D.; Tian, H.; An, G.; Li, G. Org. Chem. Front. 2019, 6, 2365.
[75] Guo, J.; Wu, Q.; Xie, Y.; Weng, J.; Lu, G. J. Org. Chem. 2018, 83, 12559.
[76] Ren, L.; Cong, H. Org. Lett. 2018, 20, 3225.
[77] Wang, C.; Guo, M.; Qi, R. Shang, Q.; Liu, Q.; Wang, S.; Zhao, L.; Wang, R.; Xu, Z. Angew. Chem., Int. Ed. 2018, 26, 15841.
[78] Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437.
[79] Johnston, C. P.; Smith, R. T.; Allmendinger, S.; MacMillan, D. W. C. Nature 2016, 536, 322.
[80] Zuo, Z.; Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 1832.
[81] Oderinde, M. S.; Varela-Alvarez, A.; Aquila, B.; Robbins, D. W.; Johannes, J. W. J. Org. Chem. 2015, 80, 7642.
[82] Luo, J.; Zhang, J. ACS Catal. 2016, 6, 873.
[83] McTiernan, C. D.; Leblanc, X.; Scaiano, J. C. ACS Catal. 2017, 7, 2171.
[84] Suen, L. M.; Wang, C.; Hunter, D. N.; Mitchell, H. J.; Cnverso, A.; ElMarrouni, A. Synthesis 2018, 50, 3177.
[85] Kautzky, J. A.; Wang, T.; Evans, R. W.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 10, 6522.
[86] Zhnag, H.; Zhang, P.; Jiang, M.; Yang, H.; Fu, H. Org. Lett. 2017, 19, 1016.
[87] Mao, R.; Frey, A.; Balon, J.; Hu, X. Nat. Catal. 2018, 1, 120.
[88] Liang, Y.; Zhang, X.; MacMillan, D. W. C. Nature 2018, 559, 83.
[89] Rueda-Becerril, M.; Mahe, O.; Drouin, M.; Majewski, M. B.; West, J. G.; Wolf, M. O.; Sammis, G. M.; Paquin, J. F. J. Am. Chem. Soc. 2014, 136, 2637.
[90] Ventre, S.; Petronijevi, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 5654.
[91] Wu, X.; Meng, C.; Yuan, X.; Jia, X.; Qian, X.; Ye, J. Chem. Commun. 2015, 51, 11864.
[92] Lang, S. B.; Cartwright, K. C.; Welter, R. S.; Locascio, T. M.; Tunge, J. A. Eur. J. Org. Chem. 2016, 3331.
[93] Davies, J.; Angelini, L.; Alkhalifah, M. A.; Sanz, L. M.; Sheikh, N. S.; Leonori, D. Synthesis 2018, 50, 821.
[94] Hu, D.; Wang, L.; Li, P. Org. Lett. 2017, 19, 2770.
[95] Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E.; Aggarwal, V. K. Science 2017, 357, 283.
[96] Jiang, M.; Yang, H.; Fu, H. Org. Lett. 2016, 18, 1968.
[97] Jin, Y.; Yang, H.; Fu, H. Chem. Commun. 2016, 52, 12909.
Outlines

/