Anti-Inflammatory Indole Alkaloids from the Stems of Kopsia officinalis

  • Xie Tian-Zhen ,
  • Zhao Yun-Li ,
  • Ma Wei-Guang ,
  • Wang Yi-Fen ,
  • Yu Hao-Fei ,
  • Wang Bei ,
  • Wei Xin ,
  • Huang Zhi-Pu ,
  • Zhu Pei-Feng ,
  • Liu Ya-Ping ,
  • Luo Xiao-Dong
Expand
  • a Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091;
    b State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201;
    c Yunnan University of Traditional Chinese Medicine, Kunming 650500

Received date: 2019-09-26

  Revised date: 2019-11-02

  Online published: 2020-04-02

Supported by

Project supported by the Yunnan Major Science and Technology Project (No. 2019ZF003), the National Key Research and Development Program of China (No. 2017YFC1704007) and the National Natural Science Foundation of China (Nos. 31872676, 31500292).

Abstract

Seven new monoterpenoid indole alkaloids, kopsiofficines A~G, together with twenty known alkaloids, were isolated from the stems of Kopsia officinalis. Their structures were elucidated on the basis of extensive spectroscopic methods. The anti-inflammatory activities of all alkaloids were evaluated on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells by the inhibiting the production of IL-1β, PGE2 and TNF-α. Among them, kopsiofficines A (1), kopsiofficines B (2), kopsiofficines D (4), kopsiofficines F (6), kopsiofficines G (7), 12-methoxykopsine (11), kopsinoline (15), (-)-N-methoxycarbonyl-11,12-methylenedioxykopsinaline (16), kopsinine (18) and kopsinic acid (20) exhibited significant anti-inflammatory activity, which were comparable to that of dexamethasone. The results supposed that the acetonyl group at C-5 of monoterpenoid indole alkaloids play an important role in their anti-inflammatory activity.

Cite this article

Xie Tian-Zhen , Zhao Yun-Li , Ma Wei-Guang , Wang Yi-Fen , Yu Hao-Fei , Wang Bei , Wei Xin , Huang Zhi-Pu , Zhu Pei-Feng , Liu Ya-Ping , Luo Xiao-Dong . Anti-Inflammatory Indole Alkaloids from the Stems of Kopsia officinalis[J]. Chinese Journal of Organic Chemistry, 2020 , 40(3) : 679 -687 . DOI: 10.6023/cjoc201909036

References

[1] Aggarwal, B.-B.; Shishir, S.; Sandur, S.-K.; Pandey, M.-K.; Gautam, S. Biochem. Pharmacol. 2006, 72, 1605.
[2] Xu, X. T.; Chen, J.; Lin, Z. Q.; Li, D, L.; Zhang, K.; Sheng, Z. J.; Wang, S. H.; Zhu, S.; Abdullah, M. A. Chin. J. Org. Chem. 2019, 39, 2958 (in Chinese). (徐学涛, 陈洁, 林芷晴, 李冬利, 张焜, 盛钊君, 王少华, 朱顺, Abdullah M. Asiri, 有机化学, 2019, 39, 2958.)
[3] Wellen, K.-E.; Hotamisligil, G.-S. J. Clin. Invest. 2005, 115, 1111.
[4] Gao, S. F.; Xu, Q. L.; Li, J. M.; Chu, Z. X.; He, G. W.; Lin, G. F.; Zhu, Z. W.; Cui, Y.; Mo, J. J.; Guo, J.; Zhao, Y. Chin. J. Org. Chem. 2018, 38, 478(in Chinese). (高粟繁, 许勤龙, 李家明, 储昭兴, 何广卫, 林高峰, 朱正伟, 崔勇, 莫佳佳, 郭敬, 赵炎, 有机化学, 2018, 38, 478.)
[5] Coussens, L.-M.; Werb, Z. Nature 2002, 420, 860.
[6] Harirforoosh, S.; Asghar, W.; Jamali, F. J. Pharm. Pharm. Sci. 2013, 16, 821.
[7] Gulati, A.; Bagga, A.; Gulati, S.; Mehta, K.-P.; Vijayakumar, M. Indian Pediatr. 2009, 46, 35.
[8] Zeng, J.; Zhang, D.-B.; Zhou, P.-P.; Zhang, Q.-L.; Zhao, L.; Chen, J.-J.; Gao, K. Org. Lett. 2017, 19, 3998.
[9] Yu, K.; Gao, B.-L.; Ding, H.-F. Acta Chim. Sinica 2016, 74, 410(in Chinese). (余宽, 高北岭, 丁寒锋, 化学学报, 2016, 74, 410.)
[10] Zhang, D.; Qin, Y. Acta Chim. Sinica 2013, 71, 147(in Chinese). (张丹, 秦勇, 化学学报, 2013, 71, 147.)
[11] Sistla, R.; Diwan, P.-V. Indian J. Pharm. Sci. 1999, 61, 275.
[12] Ye, X.-H.; Wu, H.; Sheng, L.-Y.; Liu, Y.-X.; Ye, F.; Wang, M.; Zhou, H.; Su, Y.; Zhang, X.-K. Nat. Commun. 2019, 10, 1.
[13] Huang, S.-P.; Wen, Y.-C.; Huang, S.-T.; Lin, C.-W.; Wang, T.-D.; Hsiao, F.-Y. Drug Safety 2019, 42, 67.
[14] Zeng, T.; Wu, X.-Y.; Yang, S.-X.; Lai, W.-C.; Shi, S.-D.; Zou, Q.; Liu, Y.; Li, L.-M. J. Nat. Prod. 2017, 80, 864.
[15] Wu, Y.-Q.; Suehiro, M.; Kitajima, M.; Matsuzaki, T.; Hashimoto, S.; Nagaoka, M.; Zhang, R.-P.; Takayama, H.; Takayama, H. J. Nat. Prod. 2009, 72, 204.
[16] Wenkert, E.; Cochran, D.-W.; Hagaman, E.-W.; Schell, F.-M.; Neuss, N.; Katner, A.-S.; Potier, P.; Kan, C.; Plat, M.; Koch, M.; Mehri, H.; Poisson, J.; Kunesch, N.; Holland, Y. J. Am. Chem. Soc. 1973, 95, 4990.
[17] Danieli, B.; Lesma, G.; Palmisano, G.; Riva, R.; Tollari, S. J. Org. Chem. 1984, 49, 547.
[18] Kam T.-S.; Subramaniam, G.; Chen, W. Phytochemistry 1999, 51, 159.
[19] Lim, K.-H.; Low, Y.-Y.; Tan, G.-H.; Kam, T.-S. Helv. Chim. Acta 2010, 91, 1559.
[20] Feng. X.-Z.; Kan, C.; Potier, P.; Kan, S.-K.; Lounasmaa, M. Planta Med. 1983, 48, 280.
[21] Thomas, D.-W.; Achenbach, H.; Biemann, K. J. Am. Chem. Soc. 1966, 88, 3423.
[22] Kam, T.-S.; Sim, K.-M.; Koyano, T.; Komiyama, K. Phytochemistry 1999, 50, 75.
[23] Feng, X.-Z; Kan, C.; Husson, H.-P.; Potier, P.; Kan, S.-K.; Lounasmaa, M. J. Nat. Prod. 1984, 47, 117.
[24] Subramaniam, G.; Hiraku, O.; Hayashi, M.; Koyano, T.; Komiyama, K.; Kam, T.-S. J. Nat. Prod. 2007, 70, 1783.
[25] Mariko, K.; Minako, A.; Noriyuki, K.; Sumphan, W.; Hiromitsu, T. Tetrahedron 2014, 70, 9099.
[26] Yap, W.-S.; Gan, C.-Y.; Sim, K.-S.; Lim, S.-H.; Low, Y.-Y.; Kam, T.-S. J. Nat. Prod. 2016, 79, 230.
[27] Yang, Y.; Zuo, W.-J.; Zhao, Y.-X.; Dong, W.-H.; Mei, W.-L.; Dai, H.-F. Planta Med. 2012, 78, 1881.
[28] Yang, C.-Q.; Ma, Y.-F.; Chen, Y.-G. Chem. Nat. Compd. 2017, 53, 595.
[29] Kam, T.-S.; Tan, P.-S. Phytochemistry 1990, 29, 2321.
[30] Kam, T.-S.; Tan, P.-S. Phytochemistry 1995, 39, 469.
[31] Cai, X.-H.; Li, Y.; Liu, Y.-P.; Li, X.-N.; Bao, M.-F.; Luo, X.-D. Phytochemistry 2012, 83, 116.
[32] Liu, Y.-P.; Li, Y.; Cai, X.-H.; Li, X.-L.; Kong, L.-M.; Cheng, G.-G.; Luo, X.-D. J. Nat. Prod. 2012, 75, 220.
[33] Li, Y.; Zhao, Y.-L.; Zhou, X.; Ni, W.; Dai, Z.; Yang, D.; Hao, J.-J.; Luo, L.; Liu, Y.-P.; Luo, X.-D.; Zhao, X.-D. Toxins 2017, 9, 150.
Outlines

/