ACCOUNT

Substrate-Directed Catalytic Asymmetric Hydroalkynylation of Alkenes

  • Zhang Wenwen ,
  • Wang Zixuan ,
  • Bai Xiaoyan ,
  • Li Bijie
Expand
  • Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084

Received date: 2020-02-16

  Revised date: 2020-03-08

  Online published: 2020-03-31

Supported by

Project supported by the Thousand Young Talents Program.

Abstract

Catalytic asymmetric hydrofunctionalization of alkene is an important research field, which enables efficient construction of chiral molecules from readily available starting materials. Asymmetric hydrofunctionalization of multiple substituted alkenes represents a significant challenge to organic chemists because this process involves the simutaneous control of regio-, diastereo-, and enantio-selectivities. The key to solve this challenge is to identify novel catalyst systems to exert powerful regio- and stereo-control. Recently, by taking advantage of substrate-directed strategy, we have developed a number of alkene functionalization methods with excellent regio-, diastereo-, and enantio-selectivities. In particular, we focus on catalytic asymmetric hydroalkynylation of alkenes as a model transformation to analyze the factors that control the selectivity.

Cite this article

Zhang Wenwen , Wang Zixuan , Bai Xiaoyan , Li Bijie . Substrate-Directed Catalytic Asymmetric Hydroalkynylation of Alkenes[J]. Chinese Journal of Organic Chemistry, 2020 , 40(5) : 1087 -1095 . DOI: 10.6023/cjoc202002017

References

[1] Wang, J. Stereoselective Alkene Synthesis; Springer-Verlag, Berlin/Heidelberg, 2012.
[2] (a) Coombs, J. R.; Morken, J. P. Angew. Chem. Int. Ed. 2016, 55, 2636.
(b) Chen, J. H.; Lu, Z. Org. Chem. Front. 2018, 5, 260.
(c) Dhungana, R. K.; Kc, S.; Basnet, P.; Giri, R. Chem. Rec. 2018, 18, 1314.
(d) Zhang, J.-S.; Liu, L.; Chen, T.; Han, L.-B. Chem. Asian J. 2018, 13, 2277.
(e) Ping, Y.; Li, Y.; Zhu, J.; Kong, W. Angew. Chem., Int. Ed. 2019, 58, 1562.
(f) Li, S.; Li, Z.; You, C.; Lü, H.; Zhang, X. Chin. J. Org. Chem. 2019, 39, 1568.
(g) Cheng, L.; Xie, J. Chin. J. Org. Chem. 2020, 40, 247.
(h) Zhou, Q.; Feng, X,; Yang, J.; Du, H. Chin. J. Org. Chem. 2019, 39, 2188.
[3] Wang, Z.-X.; Bai, X.-Y.; Li, B.-J. Chin. J. Chem. 2019, 37, 1174.
[4] (a) Knöpfel, T. F.; Zarotti, P.; Ichikawa, T.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 9682.
(b) Nishimura, T.; Guo, X.-X.; Uchiyama, N.; Katoh, T.; Hayashi, T. J. Am. Chem. Soc. 2008, 130, 1576.
(c) Yazaki, R.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 10275.
(d) Shirakura, M.; Suginome, M. Angew. Chem. Int. Ed. 2010, 49, 3827.
(e) Fan, B.-M.; Yang, Q.-J.; Hu, J.; Fan, C.-L.; Li, S.-F.; Yu, L.; Huang, C.; Tsang, W. W.; Kwong, F. Y. Angew. Chem., Int. Ed. 2012, 51, 7821.
(f) Sawano, T.; Ou, K.; Nishimura, T.; Hayashi, T. Chem. Commun. 2012, 48, 6106.
(g) Blay, G.; Pedro, J. R.; Sanz-Marco, A. Synthesis 2018, 50, 3281.
(h) Zhi, Y.; Huang, J.; Liu, N.; Lu, T.; Dou, X. Org. Lett. 2017, 19, 2378.
[5] (a) Fu, L.; Zhou, S.; Wan, X.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2018, 140, 10965.
(b) Yeqiang, H.; Ding, Y.; Zhou, T.; Yan, S.-Y.; Song, H.; Shi, B.-F. J. Am. Chem. Soc. 2019, 141, 4558.
(c) Dong, X.-Y.; Zhang, Y.-F.; Ma, C.-L.; Gu, Q.-S.; Wang, F.-L.; Li, Z.-L.; Jiang, S.-P.; Liu, X.-Y. Nat. Chem. 2019, 11, 1158.
(d) Chen, Q.; Tang, Y.; Huang, T.; Liu, X.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2016, 55, 5286.
[6] (a) Trost, B. M., Li, C.-J. Modern Alkyne Chemistry:Catalytic and Atom-Economic Transformations, Wiley, New York, 2014.
(b) Li, Y.; Liu, X.; Jiang, H.; Liu, B.; Chen, Z.; Zhou, P. Angew. Chem., Int. Ed. 2011, 50, 6341.
(c) Sivaguru, P.; Wang, Z.; Zanoni, G.; Bi, X. Chem. Soc. Rev. 2019, 48, 2615.
(d) Hong, F.-L.; Wang, Z.-S.; Wei, D.-D.; Zhai, T.-Y.; Deng, G.-C.; Lu, X.; Liu, R.-S.; Ye, L.-W. J. Am. Chem. Soc. 2019, 141, 16961.
(e) Zhu, D.; Chen, L.; Zhang, H.; Ma, Z.; Jiang, H.; Zhu, S. Angew. Chem., Int. Ed. 2018, 57, 12405.
(f) Ren, R.; Wu, Z.; Xu, Y.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 2866.
(g) Shen, T.; Wang, T.; Qin, C.; Jiao, N. Angew. Chem., Int. Ed. 2013, 52, 6677.
(h) Xu, G.; Zhao, H.; Fu, B.; Cang, A.; Zhang, G.; Zhang, Q.; Xiong, T.; Zhang, Q. Angew. Chem., Int. Ed. 2017, 56, 13130.
(i) Wang, Q.; Yu, X.; Jin, J.; Wu, Y.; Liang, Y. Chin. J. Chem. 2018, 36, 223.
(j) Jiang, Z.; Lu, P.; Wang, Y. Org. Lett. 2012, 14, 6266.
(k) Zhu, C.; Chu, H.; Li, G.; Ma, S.; Zhang, J. J. Am. Chem. Soc. 2019, 141, 19246.
[7] Diederich, F.; Stang, P. J.; Tykwinski, R. R. Acetylene Chemistry, Wiley-VCH, Weinheim, 2005.
[8] (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256.
(b) Winstein, S.; Sonnenberg, J.; De Vries, L. J. Am. Chem. Soc. 1959, 81, 6523.
(c) Winstein, S.; Sonnenberg, J. J. Am. Chem. Soc. 1961, 83, 3235.
[9] Henbest, H. B.; Wilson, R. A. L. J. Chem. Soc. 1957, 1958.
[10] (a) Thompson, H. W.; McPherson, E. J. Am. Chem. Soc. 1974, 96, 6232.
(b) Crabtree, R. H.; Davis, M. W. J. Org. Chem. 1986, 51, 2655.
[11] (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
(b) Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2017, 50, 988.
[12] (a) Evans, D. A.; Fu, G. C. J. Am. Chem. Soc. 1991, 113, 4042.
(b) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2003, 125, 7198.
(c) Bochat, A. J.; Shoba, V. M.; Takacs, J. M. Angew. Chem., Int. Ed. 2019, 58, 9434.
[13] Kawasaki, Y.; Ishikawa, Y.; Igawa, K.; Tomooka, K. J. Am. Chem. Soc. 2011, 133, 20712.
[14] (a) Willis, M. C. Chem. Rev. 2010, 110, 725.
(b) Murphy, S. K.; Bruch, A.; Dong, V. M. Angew. Chem., Int. Ed. 2014, 53, 2455.
[15] (a) Albrecht, M. Chem. Rev. 2010, 110, 576.
(b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(c) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754.
(d) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588.
[16] Wang, M.-X. Chem. Commun. 2015, 51, 6039.
[17] (a) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003, 5, 3667.
(b) Gooßen, L. J.; Rauhaus, J. E.; Deng, G. Angew. Chem., Int. Ed. 2005, 44, 4042.
[18] Sakaki, S.; Mizoe, N.; Sugimoto, M. Organometallics 1998, 17, 2510.
[19] Sakaki, S.; Sumimoto, M.; Fukuhara, M.; Sugimoto, M.; Fujimoto, H.; Matsuzaki, S. Organometallics 2002, 21, 3788.
[20] Bai, X. Y.; Zhang, W. W.; Li, Q.; Li, B.-J. J. Am. Chem. Soc. 2018, 140, 506.
[21] Peshkov, V. A.; Pereshivko, O. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2012, 41, 3790.
[22] Hartwig, J. F. Organotransition Metal Chemistry:From Bonding to Catalysis, University Science Books, Sausalito, CA, 2010.
[23] Bai, X.-Y.; Wang, Z.-X.; Li, B.-J. Angew. Chem., Int. Ed. 2016, 55, 9007.
[24] Ding, C. H.; Hou, X. L. Chem. Rev. 2011, 111, 1914.
[25] Yu, Z.; Meng, L.; Lin, Z. Organometallics 2019, 38, 2998.
[26] Rössler, S. L.; Petrone, D. A.; Carreira, E. M. Acc. Chem. Res. 2019, 52, 2657.
[27] Zhang, W.-W.; Zhang, S.-L.; Li, B.-J. Angew. Chem., Int. Ed. 2020, 59, 6874.
[28] (a) Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2017, 139, 5627.
(b) Huo, X.; He, R.; Zhang, X.; Zhang, W. J. Am. Chem. Soc. 2016, 138, 11093.
(c) Wei, L.; Zhu, Q.; Xu, S.-M.; Chang, X.; Wang, C.-J. J. Am. Chem. Soc. 2018, 140, 1508.
(d) Zhang, Q.; Yu, H.; Shen, L.; Tang, T.; Dong, D.; Chai, W.; Zi, W. J. Am. Chem. Soc. 2019, 141, 14554.
[29] (a) Mei, T.-S.; Patel, H. H.; Sigman, M. S. Nature 2014, 508, 340.
(b) Liu, W.-B.; Okamoto, N.; Alexy, E. J.; Hong, A. Y.; Tran, K.; Stoltz, B. M. J. Am. Chem. Soc. 2016, 138, 5234.
(c) Guo, C.; Fleige, M.; Janssen-Muller, D.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2016, 138, 7840.
[30] Wang, Z.-X.; Bai, X.-Y.; Yao, H.-C.; Li, B.-J. J. Am. Chem. Soc. 2016, 138, 14872.
[31] Li, Y.; Wu, D.; Cheng, H.-G.; Yin, G. Angew. Chem., Int. Ed. 2020, 59, 7990.
[32] (a) Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181.
(b) Feng, J.; Holmes, M.; Krische, M. J. Chem. Rev. 2017, 117, 12564.
(c) Zeng, X.-P.; Cao, Z.-Y.; Wang, Y.-H.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330.
[33] Wang, Z.-X.; Li, B.-J. J. Am. Chem. Soc. 2019, 141, 9312.
[34] (a) Wang, H.; Bai, Z.; Jiao, T.; Deng, Z.; Tong, H.; He, G.; Peng, Q.; Chen, G. J. Am. Chem. Soc. 2018, 140, 3542.
(b) Liu, Z.; Li, X.; Zeng, T.; Engle, K. M. ACS Catal. 2019, 3260.
(c) Shen, H.-C.; Zhang, L.; Chen, S.-S.; Feng, J.; Zhang, B.-W.; Zhang, Y.; Zhang, X.; Wu, Y.-D.; Gong, L.-Z. ACS Catal. 2019, 9, 791.
(d) Nimmagadda, S. K.; Liu, M.; Karunananda, M. K.; Gao, D. W.; Apolinar, O.; Chen, J. S.; Liu, P.; Engle, K. M. Angew. Chem., Int. Ed. 2019, 58, 3923.
(e) Vanable, E. P.; Kennemur, J. L.; Joyce, L. A.; Ruck, R. T.; Schultz, D. M.; Hull, K. L. J. Am. Chem. Soc. 2019, 141, 739.
(f) Tang, C.; Zhang, R.; Zhu, B.; Fu, J.; Deng, Y.; Tian, L.; Guan, W.; Bi, X. J. Am. Chem. Soc. 2018, 140, 16929.
Outlines

/