Transition Metal-Free Direct C-H Bond Sulfenylation of Alkenes and Arenes

  • Xu Xinming ,
  • Yang Hanlin ,
  • Li Wenzhong
Expand
  • a College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005

Received date: 2019-12-31

  Revised date: 2020-03-16

  Online published: 2020-04-09

Supported by

Project supported by the National Natural Science Foundation of China (No. 21901220), and the Young Scholars Research Fund of Yantai University (No. HY19B06).

Abstract

Aryl and vinyl sulfides have attracted much attention from medical and organic chemists because they are prevalent in natural or bioactive molecules and other potential functional organic materials. Therefore, considerable efforts have been made for the construction of aryl and vinyl sulfides, among them transition metal-free direct C-H bond sulfenylation has developed rapidly and became an efficient and eco-friendly synthetic protocol. In recent years, many excellent research achievements were presented and a range of sulfenylated alkenes and arenes were synthesized using this strategy. The recent five-year progress in direct sulfenylation of C-H bond on alkenes and arenes under transition metal-free conditions is reviewed and the corresponding reaction mechanisms are discussed.

Cite this article

Xu Xinming , Yang Hanlin , Li Wenzhong . Transition Metal-Free Direct C-H Bond Sulfenylation of Alkenes and Arenes[J]. Chinese Journal of Organic Chemistry, 2020 , 40(7) : 1912 -1925 . DOI: 10.6023/cjoc201912044

References

[1] (a) Kvasnika, M.; Urban, M.; Dickinson, N. J.; Sarek, J. Nat. Prod. Rep. 2015, 32, 1303.
(b) Meng, D.; Chen, W.; Zhao, W. J. Nat. Prod. 2007, 70, 824.
(c) Cremlyn, R. J. An Introduction to Organosulfur Chemistry, Wiley, New York, 1996.
(d) Iino, H.; Usui, T.; Hanna, J.-I. Nat. Commun. 2015, 5, 6828.
(e) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 11, 1596.
[2] (a) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200.
(b) Kim, S.; Dahal, N.; Kesharwani, T. Tetrahedron Lett. 2013, 54, 4373.
[3] (a) Boyd, D. A. Angew. Chem., Int. Ed. 2016, 55, 15486.
(b) Wu, D.; Pisula, W.; Haberecht, M. C.; Feng, X.; Müllen, K. Org. Lett. 2009, 11, 5686.
(c) Yang, S. M.; Shie, J. J.; Fang, J. M.; Nandy, S. K.; Chang, Y. Y. J. Org. Chem. 2002, 67, 5208.
[4] (a) Carretero, J. C. Chem. Commun. 2011, 47, 2207.
(b) Pellisier, H. RSC Catalysis Series 2, Royal Society of Chemistry, Cambridge, 2009.
[5] (a) Kausar, A.; Zulfiqar, S.; Sarwar, M. I. Pol. Rev. 2014, 54, 185.
(b) Rahate, A. S.; Nemade, K. R.; Waghuley, S. A. Rev. Chem. Eng. 2013, 29, 471.
(c) Spassky, N. Phosphorus Sulfur Silicon Relat. Elem. 1993, 74, 71.
[6] (a) Hartwig, J. F. Nature 2008, 455, 314.
(b) Lu, Q.; Zhang, J.; Wei, F. L.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 7156.
(c) Lu, Q.-Q.; Zhang, J.; Zhao, G.-L.; Qi, Y.; Wang, H.-M.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481.
[7] (a) Beletskaya, I. P.; Ananikov, V. P. Eur. J. Org. Chem. 2007, 2007, 3431.
(b) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.
(c) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X. Chem. Soc. Rev. 2015, 44, 291.
[8] (a) Zhang, S.-N.; Yang, S.-H.; Huang, L.-H.; Zhao, B.-L.; Cheng, K.; Qi, C.-Z. Chin. J. Org. Chem. 2015, 35, 2259(in Chinese). (张诗浓, 杨胜虎, 黄乐浩, 赵保丽, 程凯, 齐陈泽, 有机化学, 2015, 35, 2259.)
(b) Xu, X.-M.; Chen, D.-M.; Wang, Z.-L. Chin. J. Org. Chem. 2019, 39, 3338(in Chinese). (徐鑫明, 陈德茂, 王祖利, 有机化学, 2019, 39, 3338.)
(c) Dalpozzo, R. Org. Chem. Front. 2017, 4, 2063.
(d) Freckleton, M.; Baeza, A.; Benavent, L.; Chinchilla, R. Asian J. Org. Chem. 2018, 7, 1006.
(e) Sun, J.; Qiu, J.-K.; Zhu, Y.-L.; Guo, C.; Hao, W.-J.; Jiang, B.; Tu, S.- J. J. Org. Chem. 2015, 80, 8217.
(f) Sun, J.; Qiu, J.-K.; Jiang, B.; Hao, W.-J.; Guo, C.; Tu, S.-J. J. Org. Chem. 2016, 81, 3321.
[9] (a) Liu, Y.-Y.; Xiong, J.; Wei, L. Chin. J. Org. Chem. 2017, 37, 1667(in Chinese). (刘云云, 熊进, 韦丽, 有机化学, 2017, 37, 1667.)
(b) Dong, D.-Q.; Hao, S.-H.; Yang, D.-S.; Li, L.-X.; Wang, Z.-L. Eur. J. Org. Chem. 2017, 2017, 6576.
(c) Xu, X.-M.; Li, J.; Wang, Z.-L. Chin. J. Org. Chem. 2020, 40, 886(in Chinese). (徐鑫明, 李家柱, 王祖利, 有机化学, 2020, 40, 886.)
(d) Jin, C.-A.; Xu, Q.; Feng, G.-F.; Jin, Y.; Zhang, L.-Y. Chin. J. Org. Chem. 2018, 38, 775(in Chinese). (金城安, 徐庆, 冯高峰, 金阳, 张连阳, 有机化学, 2018, 38, 775.)
(e) Xu, X.-M.; Chen, D.-M.; Wang, Z.-L. Chin. Chem. Lett. 2020, 31, 49.
[10] (a) Nakazawa, T.; Xu, J.; Nishikawa, T.; Oda, T.; Fujita, A.; Ukai, K.; Mangindaan, R. E. P.; Rotinsulu, H.; Kobayashi, H.; Namikoshi, M. J. Nat. Prod. 2007, 70, 439.
(b) Nielsen, S. F.; Olsen, G. M.; Liljefors, T.; Peters, D. J. Med. Chem. 2000, 43, 2217.
(c) Mori, T.; Nishimura, T.; Yamamoto, T.; Doi, I.; Miyazaki, E.; Osaka, I.; Takimiya, K. J. Am. Chem. Soc. 2013, 135, 13900.
[11] (a) Varun, B. V.; Gadde, K.; Prabhu, K. R. Org. Lett. 2015, 17, 2944.
(b) Cao, H.; Yuan, J.; Liu, C.; Hu, X.-Q.; Lei, A.-W. RSC Adv. 2015, 5, 41493.
(c) Siddaraju, Y.; Prabhu, K. R. Org. Lett. 2016, 18, 6090.
(d) Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2018, 83, 2986.
(e) Wang, D.; Liu, Z.; Wang, Z.; Ma, X.; Yu, P. Green Chem. 2019, 21, 157.
(f) Chen, Q.; Yu, G.; Wang, X.; Ou, Y.; Huo, Y. Green Chem. 2019, 21, 798.
[12] (a) Ohkado, R.; Ishikawa, T.; Iida, H. Green Chem. 2018, 20, 984.
(b) Guo, W.; Tan, W.; Zhao, M.; Tao, K.; Zheng, L.-Y.; Wu, Y.; Chen, D.; Fan, X.-L. RSC Adv. 2017, 7, 37739.
(c) Zhang, H.; Bao, X.; Song, Y.; Qu, J.; Wang, B. Tetrahedron 2015, 71, 8885.
(d) Bai, F.-C.; Zhang, S.; Wei, L.; Liu, Y.-Y. Asian J. Org. Chem. 2018, 7, 371.
[13] (a) Hiebel, M.; Berteina-Raboin, S. Green Chem. 2015, 17, 937.
(b) Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2016, 81, 7838.
(c) Iida, H.; Demizu, R.; Ohkado, R. J. Org. Chem. 2018, 83, 12291.
(d) Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. Chin. J. Chem. 2019, 37, 49.
(e) Rahaman, R.; Das, S.; Barman, P. Green Chem. 2018, 20, 141.
[14] Parumala, S. K. R.; Peddinti, R. K. Green Chem. 2015, 17, 4068.
[15] Wang, H.-H.; Shi, T.; Gao, W.-W.; Wang, Y.-Q.; Li, J.-F.; Jiang, Y.; Hou, Y.-S.; Chen, C.; Peng, X.; Wang, Z. Chem. Asian J. 2017, 12, 2675.
[16] Xiao, F.-H.; Tian, J.-X.; Xing, Q.-Y.; Huang, H.-W.; Deng, G.-J.; Liu, Y.-J. ChemistrySelect 2017, 2, 428.
[17] (a) Shanmugapriya, J.; Rajaguru, K.; Muthusubramanian, S.; Bhuvanesh, N. Eur. J. Org. Chem. 2016, 2016, 1963.
(b) Huang, W.; Yang, G.-F. Bioorg. Med. Chem. 2006, 14, 8280.
[18] Kong, D.-L.; Huang, T.; Liang, M.; Wu, M.-S.; Lin, Q. Org. Biomol. Chem. 2019, 17, 830.
[19] Fan, W.; Chen, K.-Y.; Chen, Q.-P.; Li, G.-G.; Jiang, B. Org. Biomol. Chem. 2017, 15, 6493.
[20] (a) Liu, Y.; Badsara, S. S.; Liu, Y.; Lee, C. RSC Adv. 2015, 5, 44299.
(b) Devi, N.; Rahaman, R.; Sarma, K.; Khan, T.; Barman, P. Eur. J. Org. Chem. 2017, 2017, 1520.
(c) Rafique, J.; Saba, S.; Rosrio, A. R.; Braga, A. L. Chem. Eur. J. 2016, 22, 79.
(d) Ji, X.-M.; Zhou, S.-J.; Chen, F.; Zhang, X.-G.; Tang, R.-Y. Synthesis 2015, 47, 659.
[21] Rodrigues, J.; Saba, S.; Joussef, A. C.; Rafique, J.; Braga, A. L. Asian J. Org. Chem. 2018, 5, 1819.
[22] Hazarika, S.; Gogoi, P.; Barman, P. RSC Adv. 2015, 5, 25765.
[23] Kawashima, H.; Yanagi, T.; Wu, C.-C.; Nogi, K.; Yorimitsu, H. Org. Lett. 2017, 19, 4552.
[24] Hostier, T.; Ferey, V.; Ricci, G.; Pardo, D. G.; Cossy, J. Org. Lett. 2015, 17, 3898.
[25] Nalbandian, C. J.; Brown, Z. E.; Alvarez, E.; Gustafson, J. L. Org. Lett. 2018, 20, 3211.
[26] Böhm, M. J.; Golz, C.; Rüter, I.; Alcarazo, M. Chem.-Eur. J. 2018, 24, 15026.
[27] (a) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
(c) Wang, J.; Sánchez-Roselló, M.; Aceña, J.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(d) Landelle, G.; Panossian, A.; Leroux, F. R. Curr. Top. Med. Chem. 2014, 14, 941.
[28] (a) Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014, 2014, 2415.
(b) Shao, X.-X.; Xu, C.-F.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48, 1227.
(c) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.
(d) Chachignon, H.; Cahard, D. Chin. J. Chem. 2016, 34, 445.
[29] Jereb, M.; Gosak, K. Org. Biomol. Chem. 2015, 13, 3103.
[30] Horvat, M.; Jereb, M.; Iskra, J. Eur. J. Org. Chem. 2018, 2018, 3837.
[31] Bonazaba Milandou, L. J. C.; Carreyre, H.; Alazet, S.; Greco, G.; Martin-Mingot, A.; Ouamba, J.-M.; Bouazza, F.; Billard, T.; Thibaudeau, S. Angew. Chem., Int. Ed. 2017, 56, 169.
[32] Liu, S.; Zeng, X.; Xu, B. Asian J. Org. Chem. 2019, 8, 1372.
[33] Lu, S.; Chen, W.; Shen, Q. Chin. Chem. Lett. 2019, 30, 2279.
[34] Zhang, P.; Li, M.; Xue, X.-S.; Xu, C.; Zhao, Q.; Liu, Y.; Wang, H.; Guo, Y.; Lu, L.; Shen, Q. J. Org. Chem. 2016, 81, 7486.
[35] Wang, D.; Zhang, R.; Lin, S.; Yan, Z.; Guo, S. M. RSC Adv. 2015, 5, 108030.
[36] Xiao, F.; Chen, S.; Tian, J.; Huang, H.; Liu, Y.; Deng, G. Green Chem. 2016, 18, 1538.
[37] Xu, Z.; Lu, G.; Cai, C. Org. Biomol. Chem. 2017, 15, 2804.
[38] Lin, Y.-M.; Lu, G.-P.; Wang, G.-X.; Yi, W.-B. Adv. Synth. Catal. 2016, 358, 4100.
[39] Yan, Q.; Jiang, L.; Yi, W.-B.; Liu, Q.; Zhang, W. Adv. Synth. Catal. 2017, 359, 2471.
[40] Huang, Z.; Matsubara, O.; Jia, S.; Tokunaga, E.; Shibata, N. Org. Lett. 2017, 19, 934.
[41] (a) Zhao, X.; Wei, A.; Yang, B.; Li, T.; Li, Q.; Qiu, D.; Lu, K. J. Org. Chem. 2017, 82, 9175.
(b) Zhao, X.; Zheng, X.; Tian, M.; Sheng, J.; Tong, Y.; Lu, K. Tetrahedron 2017, 73, 7233.
[42] Chachignon, H.; Maeno, M.; Kondo, H.; Shibata, N.; Cahard, D. Org. Lett. 2016, 18, 2467.
[43] Liu, J.; Zhao, X.; Jiang, L.; Yi, W.-B. Adv. Synth. Catal. 2018, 360, 4012.
[44] Fernandez-Salas, J.; Pulis, A.; Procter, D. J. Chem. Commun. 2016, 52, 12364.
[45] Chen, D.; Feng, Q.; Yang, Y.; Cai, X.; Wang, F.; Huang, S. Chem. Sci. 2017, 8, 1601.
[46] (a) Yang, X.; Yan, R. Org. Biomol. Chem. 2017, 15, 3571.
(b) Wang, T.; Yang, F.; Tian, S. Adv. Synth. Catal. 2015, 357, 928.
(c) Rahaman, R.; Devi, N.; Sarmaa, K.; Barman, P. RSC Adv. 2016, 6, 10873.
(d) Bagdi, A. K.; Mitra, S.; Ghosh, M.; Hajra, A. Org. Biomol. Chem. 2015, 13, 3314.
(e) Rong, G.; Mao, J.; Yan, H.; Zheng, Y.; Zhang, G. J. Org. Chem. 2015, 80, 4697.
[47] Pang, X.; Xiang, L. K.; Yang, X. D.; Yan, R. L. Adv. Synth. Catal. 2016, 358, 321.
[48] Zhao, X.; Li, T. J.; Zhang, L. P.; Lu, K. Org. Biomol. Chem. 2016, 14, 1131.
[49] Zhao, X.; Deng, Z. J.; Wei, A. Q.; Li, B. Y.; Lu, K. Org. Biomol. Chem. 2016, 14, 7304.
[50] (a) Wang, D. Y.; Guo, S. M.; Zhang, R. X.; Lin, S.; Yan, Z. H. RSC Adv. 2016, 6, 54377.
(b) Wang, D. Y.; Zhang, R. X.; Lin, S.; Deng, R. H.; Yan, Z. H. Chin. J. Org. Chem. 2016, 36, 2757(in Chinese). (王丁意, 张荣兴, 林森, 邓瑞红, 严兆华, 有机化学, 2016, 36, 2757.)
[51] Li, J.; Zhu, D.; Lv, L.; Li, C.-J. Chem. Sci. 2018, 9, 5781.
[52] Liu, P.; Liu, W.; Li, C.-J. J. Am. Chem. Soc. 2017, 139, 14315.
[53] (a) Wadman, M. Nature 2006, 440, 277
(b) Williams, R. B.; Norris, A.; Slebodnick, C.; Merola, J.; Miller, J. S.; Andriantsiferana, R.; Rasamison, V. E.; Kingston, D. G. J. Nat. Prod. 2005, 68, 1371.
(c) Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693.
(d) Lin, Y.-M.; Lu, G.-P.; Wang, R.-K.; Yi, W.-B. Org. Lett. 2016, 18, 6424.
[54] Zhao, W.; Xie, P.; Bian, Z.; Zhou, A.; Ge, H.; Niu, B.; Ding, Y. RSC Adv. 2015, 5, 59861.
[55] Ding, Y.; Zhao, W.; Li, Y.; Xie, P.; Wu, W.; Zhou, A.; Huang, Y.; Liu, Y. Org. Biomol. Chem. 2016, 14, 1428.
[56] Guo, T. Synth. Commun. 2017, 47, 2053.
[57] Zhao, W.; Xie, P.; Bian, Z.; Zhou, A.-H.; Ge, H.-B.; Zhang, M.; Ding, Y.; Zheng, L. J. Org. Chem. 2015, 80, 9167.
[58] Liu, W.-J.; Wang, S.-H.; Cai, Z.-H.; Li, Z.-Y.; Liu, J.-W.; Wang, A.-D. Synlett 2018, 29, 116.
[59] Wan, J.-P.; Zhong, S.; Xie, L.; Cao, X.; Liu, Y.; Wei, L. Org. Lett. 2016, 18, 584.
[60] Bai, F.-C.; Zhang, S.; Wei, L.; Liu, Y.-Y. Asian J. Org. Chem. 2018, 7, 371.
[61] Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2017, 82, 3084.
[62] Xiao, F.-H.; Wang, D.; Yuan, S.; Huang, H.; Deng, G.-J. RSC Adv. 2018, 8, 23319.
[63] Fu, H.; Zhao, B.-T.; Zhu, W.-M. Tetrahedron Letters 2019, 60, 124.
[64] Yang, F.-L.; Gui, Y.; Yu, B.-K.; Jin, Y.-X.; Tian, S.-K. Adv. Synth. Catal. 2016, 358, 3368.
[65] (a) Bao, Y.; Yang, X.-Q.; Zhou, Q.-F.; Yang, F. L.; Org. Lett. 2018, 20, 1966.
(b) Bao, Y.; Zhong, L.-Y.; Hou, Q.; Zhou, Q.-F.; Yang, F.-L. Chin. J. Chem. 2018, 36, 1063.
[66] Deng, L.-L.; Liu, Y.-Y. ACS Omega 2018, 3, 11890.
[67] Guo, T.; Wei, X.-N. Synlett 2017, 28, 2499.
[68] Yang, Z.; Yan, Y.; Li, A.; Liao, J.; Zhang, L.; Yang, T.; Zhou, C. New J. Chem. 2018, 42, 14738.
[69] Dong, Y.-T.; Jin, Q.; Zhou, L.; Chen, J. Org. Lett. 2016, 18, 5708.
[70] Bu, M.; Lu, G.; Cai, C. Org. Chem. Front. 2017, 4, 266.
[71] Li, G.; Zhang, G.; Deng, X.; Qu, K.; Wang, H.; Wei, W.; Yang, D. Org. Biomol. Chem. 2018, 16, 8015.

Outlines

/