Study on the Total Synthesis of Resveratrol Dimers Quadrangularin A and Pallidol

  • Han Jilai ,
  • Tang Meilin ,
  • Sun Xun
Expand
  • a Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203;
    b The Institutes of Integrative Medicine of Fudan University, Shanghai 200040;
    c Institutes of Biomedical Sciences, Fudan University, Shanghai 200433

Received date: 2020-01-23

  Revised date: 2020-03-13

  Online published: 2020-04-10

Supported by

Project supported by the National Natural Science Foundation of China (No. 81673297), the Shanghai Committee of Science and Technology (No. 17431902500), and the China Postdoctoral Science Foundation (No. 2019M651384).

Abstract

This paper has focused on developing a novel methodology for the total synthesis of quadrangularin A (3) and pallidol (4). These two resveratrol dimers have been obtained from the inexpensive materials of 3,5-dimethoxybenzaldehyde (5) and 3,5-dimethoxybenzaldehyde (6) within 9 steps and 11 steps with total yields of 2.6% and 1.3%, respectively. The stilbene skeleton constructed by two symmetric or asymmetric aromatic rings (A and B) has been synthesized simply through Knoevenagel reaction under mild conditions with yield of more than 98%, which expanded the diversity of stilbene skeleton (7), and addressed the problems of limited expansion of asymmetric structure, low yield and complex operation. In addition, the key intermediate of 4-enaldehyde skeleton structure (9) could be used to construct aromatic rings of C and D efficiently, which has thrown light on the expansion of resveratrol dimers with aromatic ring A, B, C and D in diversity structure. All the intermediates and natural products have been characterized by 1H NMR, 13C NMR, and HRMS.

Cite this article

Han Jilai , Tang Meilin , Sun Xun . Study on the Total Synthesis of Resveratrol Dimers Quadrangularin A and Pallidol[J]. Chinese Journal of Organic Chemistry, 2020 , 40(6) : 1571 -1577 . DOI: 10.6023/cjoc202001031

References

[1] Huang, K. S.; Lin, M.; Yu, L N.; Kong, M. Tetrahedron 2000, 56, 1321.
[2] Huang, K S.; Lin, M; Cheng, G. Phytochemistry 2001, 58, 357.
[3] Ito, J.; Takaya, Y.; Oshima, Y.; Niwa, M. Tetrahedron 1999, 55, 2529.
[4] Li, W. W.; Ding, L.; Li, B.; Chen, Y. Z. Phytochemistry 1996, 42, 1163.
[5] Cichewicz, R. H.; Kouzi, S. A.; Hamann, M. T. J. Nat. Prod. 2000, 63, 29.
[6] He, S.; Lu, Y.; Wu, B.; Pan, Y. J. Chromatogr. A 2007, 1151, 175.
[7] Li, W.; Teng, L.; Yang, Y.; Yang, Y. Chin. J. Org. Chem. 2013, 33, 2443(in Chinese). (李文玲, 吕腾, 杨玉华, 有机化学, 2013, 33, 2443.)
[8] Keylor, M. H.; Matsuura, B. S.; Stephenson, C. R. J. Chem. Rev. 2015, 115, 8976
[9] Davin, B. L.; Wang, H.-B. Science 1997, 275(5298), 362.
[10] Kim, K. W.; Smith, C. A.; Daily, M. D.; Cort, J. R.; Davin, L. B.; Lewis, N. G. J. Biol. Chem. 2009, 290, 1308.
[11] Sako, M.; Hosokawa, H.; Ito, T.; Iinuma, M. J. Org. Chem. 2004, 69, 2598.
[12] Nicotra, S.; Cramarossa, M. R.; Mucci, A.; Pagnoni, U. M.; Riva, S.; Forti, L. Tetrahedron 2004, 60, 595.
[13] Li, W. L.; Li, H.; Li, Y.; Angew. Chem., Int. Ed. 2006, 45, 7609.
[14] Li, W. L.; Li., H. F.; Luo, Y. L.; Yang, Y.; Wang, N. Synlett 2010, 1247.
[15] Matsuura, B. S.; Keylor, M. H.; Li, B.; Lin, Y.; Allison, S.; Pratt, D. A.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2015, 54, 3754.
[16] Keylor, M. H.; Matsuura, B. S.; Griesser, M.; Chauvin, J. P. R.; Harding, R. A.; Kirillova, M. S.; Zhu, X.; Fischer, O. J.; Pratt, D. A.; Stephenson, C. R. J. Science 2016, 354, 1260.
[17] Snyder, S. A.; Breazzano, S. P.; Ross, A. G.; Lin, Y.; Zografos, A. L. J. Am. Chem. Soc. 2009, 131, 1753
[18] Snyder, S. A.; Gollner, A.; Chiriac, M. I. Nature 2011, 474, 461
[19] Snyder, S. A.; Wright, N. E.; Pflueger, J. J.; Breazzano, S. P. Angew. Chem. 2011, 123, 8788
[20] Snyder, S. A.; Thomas, S. B.; Dr. Mayer, A. C.; Breazzano, S. P. Angew. Chem. 2007, 51, 4080
[21] Snyder, S. A.; Zografos, A. L.; Lin, Y. Angew. Chem. 2007, 119, 8334.
[22] Snyder, S. A.; Zografos, A. L.; Lin, Y. Angew. Chem., Int. Ed. 2007, 46, 818.
[23] Snyder, S. A.; Brill, Z. G. Org. Lett. 2011, 13, 5524
[24] Wright, N. E., Snyder, S. A. Angew. Chem., Int. Ed. 2014, 53, 3409.
[25] Nicolaou, K. C.; Wu, T. R.; Kang, Q.; Chen, D. Y. K. Angew. Chem., Int. Ed. 2009, 48, 3440.
[26] Kerr, D. J.; Miletic, M.; Manchala, N.; White, J. M.; Flynn, B. L. Org. Lett. 2013, 15, 4118.
[27] Soldi, C.; Lamb, K. N.; Squitieri, R. A.; González-López, M.; Di Maso, M. J.; Shaw, J. T. J. Am. Chem. Soc. 2014, 136, 15142.
[28] Kraus, G. A.; Gupta, V. Tetrahedron Lett. 2009, 50, 7180.
[29] Sun, X.; Izumi, K. J.; Hu, C. Q.; Lin, G. Q. Chin. J. Chem. 2006, 24, 430.
[30] Sun, X.; Zhu, J.; Zhong, C.; Izumi, K. J.; Zhang, C. Chin. J. Chem. 2010, 25, 1866.
[31] Zhu, J.; Zhong, C.; Lu, H. F.; Li, G. Y.; Sun, X. Synlett 2008, 458.
[32] Chen, Z.; Zhu, J.; Chang, J.; Sun, X. Tetrahedron Lett. 2011, 52, 2815.
[33] Meyers, M. J. Med. Chem. 2001, 44, 4230.
[34] Yoo, J.; Dence, C. S.; Sharp, T. L.; Katzenellenbogen, J. A.; Welch, M. J. Med. Chem. 2005, 48, 6366
[35] Tang, M.-L.; Peng, P.; Liu, Z.-Y.; Zhang, J.; Yu, J.-M.; Sun, X. Chem.-Eur. J. 2016, 22, 14535.
[36] Jepsen, T. H,;Thomas, S. B.; Lin, Y.; Stathakis, C. I.; de Miguel, I.; Snyder, S. A. Angew. Chem., Int. Ed. 2014, 53, 6747.
Outlines

/