Recent Advances and Applications in N-Methylation of Amines and Imines

  • Yan Feng ,
  • Cai Shuang ,
  • Wen Wu ,
  • Wen Wei ,
  • Li Bojie ,
  • Wang Liansheng ,
  • Zhu Lei
Expand
  • a School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, Hubei 432000;
    b School of Materials Science and Engineering, Hubei University, Wuhan 430062;
    c Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074

Received date: 2019-12-22

  Revised date: 2020-04-05

  Online published: 2020-04-17

Supported by

Project supported by the National Natural Science Foundation of China (No. 21774029), the Hubei University Excellent Young and Middle-Aged Science and Technology Innovation Team Project (No. T201816), the Opening Fund of Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica (No. BCMM201805), the Natural Science Foundation of Xiaogan City (No. XGKJ201910047), the "Chutian Scholar" Program of Hubei Province (Lei Zhu), and the High-Level Master's Thesis Cultivation Project of Hubei Engineering University.

Abstract

N-Methylation of amines and imines is one of the most important reactions for C-N bond formation. It is widely utilized for both laboratary research and industrial applications. Traditional methylation reactions involve the use of flammable, explosive and toxic starting materials. In contrast, newly developed methods have overcome this point and provide a mild strategy. In this transformation, C1 carbon source for the methyl group is important which determines the type of catalyst, reaction conditions and substrate scope. Herein, the research progress for the N-methylation of amines and imines is summarized based on different C1 carbon source.

Cite this article

Yan Feng , Cai Shuang , Wen Wu , Wen Wei , Li Bojie , Wang Liansheng , Zhu Lei . Recent Advances and Applications in N-Methylation of Amines and Imines[J]. Chinese Journal of Organic Chemistry, 2020 , 40(7) : 1874 -1890 . DOI: 10.6023/cjoc201912031

References

[1] Bissember, A. C.; Lundgren, R. J.; Creutz, S. E.; Peters, J. C.; Fu, J. C. Angew. Chem., Int. Ed. 2013, 52, 5129.
[2] Cho, S. H.; Kim, J. Y.; Lee, S. Y.; Chang, S. Angew. Chem., Int. Ed. 2009, 48, 9127.
[3] Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14168.
[4] Jacquet, O., Gomes, C. D. N., Ephritikhine, M.; Cantat, T. J. Am. Chem. Soc. 2012, 134, 2934.
[5] Arakara, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A.; Domen, K.; DuBois, D. L.; Eckert, J.; Fujita, E.; Gibson, D. H.; Goddard, W. A.; Goodman, D. W.; Keller, J.; Kubas, G. J.; Kung, H. H.; Lyons, J. E.; Manzer·, L. E.; Marks, T. J.; Morokuma, K.; Nicholas, K. M.; Periana, R.; Que, L.; Rostrup-Nielson, J.; Sachtler, W. M. H.; Schmidt, L. D.; Sen, A.; Somorjai, G. A.; Stair, P. C.; Stults, B. R.; Tumas, W. Chem. Rev. 2001, 101, 953.
[6] Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.
[7] Wang, W.; Wang, S.-P.; Ma, X.-B.; Gong, J.-L. Chem. Soc. Rev. 2011, 40, 3703.
[8] Fernández-Alvarez, F. J.; Aitani, A. M.; Oro, L. A. Catal. Sci. Technol. 2014, 4, 611.
[9] Gomes, C. D. N.; Jacquet, O.; Villiers, C.; Thuéry, P.; Ephritikhine, M.; Cantat, T. Angew. Chem., Int. Ed. 2012, 51, 187.
[10] Khandelwal, M.; Wehmschulte, R. J. Angew. Chem., Int. Ed. 2012, 51, 7323.
[11] Jacquet, O.; Gomes, C. D. N.; Ephritikhine, M.; Cantat, T. ChemCatChem 2013, 5, 117.
[12] Li, Y.; Fang, X.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 9568.
[13] Tlili, A.; Frogneux, X.; Blondiaux, E.; Cantat, T. Angew. Chem., Int. Ed. 2014, 53, 2543.
[14] Li, Y.; Sorribes, I.; Yan, T.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 12156.
[15] Jacquet, O.; Frognuex, X.; Gomes, C. D. N.; Cantat, T. Chem. Sci. 2013, 4, 2127.
[16] Blondiaux, E.; Pouessel, J.; Cantat, T. Angew. Chem., Int. Ed. 2014, 53, 12186.
[17] Beydoun, K.; Stein, T. v.; Klankermayer, J.; Lertner, W. Angew. Chem., Int. Ed. 2013, 52, 9554.
[18] Beydoun, K.; Ghattas, G.; Thenert, K.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2014, 53, 11010.
[19] Cui, X.; Dai, X.; Zhang, Y.; Deng, Y.; Shi, F. Chem. Sci. 2014, 5, 649.
[20] Cui, X.; Zhang, Y.; Deng, Y.; Shi, F. Chem. Commun. 2014, 50, 13521.
[21] Kon, K.; Siddiki, S. M. A. H.; Onodera, W.; Shimizu, K. Chem.- Eur. J. 2014, 20, 6264.
[22] Yang, Z.; Yu, B.; Zhang, H.; Zhao, Y.; Ji, G.; Ma, Z.; Gao, X.; Liu, Z. Green Chem. 2015, 17, 4189.
[23] Yang, Z.; Yu, B.; Zhang, H.; Zhao, Y.; Ji, G.; Liu, Z. RSC Adv. 2015, 5, 19613.
[24] Yang, Z.; Yu, B.; Zhang, H.; Zhao, Y.; Yu, C.; Ma, Z.; Ji, G.; Gao, X.; Han, B.; Liu, Z. ACS Catal. 2016, 6, 1268.
[25] Liger, F.; Eijsbout, T.; Cadarossanesaib, F.; Tourvieille, C.; Bars, D. L.; Billard, T. Eur. J. Org. Chem. 2015, 6434.
[26] Du, X.-L.; Tang, G.; Bao, H.-L.; Jiang, Z.; Zhong, X.-H.; Su, D. S.; Wang, J.-Q. ChemSusChem 2015, 8, 3489.
[27] Lucero, G.-S; Marcos, F.-A; Juventino, J. G. Organometallics 2015, 34, 763.
[28] Santoro, O.; Lazreg, F.; Minenkov, Y.; Cavallo, L.; Cazin, C. S. J. Dalton. Trans. 2015, 44, 18138.
[29] Chen, W.-C.; Shen, J.-S.; Jurca, T.; Peng, C.-J.; Lin, Y.-H.; Wang, Y.-P.; Shih, W.-C.; Yap, G. P. A.; Ong, T.-G. Angew. Chem., Int. Ed. 2015, 54, 15422.
[30] Nguyen, T. V. Q.; Yoo, W.-J.; Kobayashi, S. Adv. Synth. Catal. 2016, 358, 452.
[31] Liu, X.-F.; Li, X.-Y.; Qiao, C.; Fu, H.-C.; He, L.-N. Angew. Chem., Int. Ed. 2017, 56, 7425.
[32] Li, G.; Chen, J.; Zhu, D.-Y.; Chen, Y.; Xia, J.-B. Adv. Synth. Catal. 2018, 360, 2364.
[33] Sorribes, I.; Junge, K.; Beller, M. Chem.-Eur. J. 2014, 20, 7878.
[34] Savourey, S.; Lefèvre, G.; Berthet, J.-C.; Cantat, T. Chem. Commun. 2014, 50, 14033.
[35] Fu, M.-S.; Shang, R.; Cheng, W.-M.; Fu, Y. Angew. Chem., Int. Ed. 2015, 54, 9042.
[36] Zhu, L.; Li, B.-J.; Wang, S.; Wang, W.; Wang, L.-S.; Ding, L.; Qin, C.-Q. Polymers 2018, 10, 385.
[37] Wen, W.; Han, B.; Yan, F.; Ding, L.; Li, B.-J.; Wang, L.-S.; Zhu, L. Nanomaterials 2018, 8, 326.
[38] Zhu, L.; Wang, L.-S.; Li, B.-J.; Li. W.; Fu. B.-Q. Catal. Sci. Technol. 2016, 6, 6172.
[39] Andrew, K. G.; Summers, D. M.; Donnelly, L. J.; Denton, R. M. Chem. Commun. 2016, 52, 1855.
[40] Qiao, C.; Liu, X.-F.; Liu, X.; He, L.-N. Org. Lett. 2017, 19, 1490.
[41] Natte, K.; Neumann, H.; Beller, M.; Jagadeesh, R. V. Angew. Chem., Int. Ed. 2017, 56, 6384.
[42] Chen, Y. Chem.-Eur. J. 2019, 25, 3405.
[43] Dominguez-Huerta A.; Dai X.-J.; Zhou, F.; Querard, P.; Qiu, Z.; Ung, S.; Liu, W.; Li, J.-B.; Li, C.-J. Can. J. Chem. 2019, 97, 67.
[44] Xu, C.-P.; Xiao, Z.-H.; Zhuo, B.-Q.; Wang, Y.-H.; Huang, P.-Q. Chem. Commun. 2010, 46, 7834.
[45] Yan, T.; Feringa, B. L.; Barta, K. Sci. Adv. 2017, 3, eaao6494.
[46] Zhang, L.; Zhang, Y.; Deng, Y.; Shi, F. RSC. Adv. 2015, 5, 14514.
[47] Tsarev, V. N.; Morioka, Y.; Caner, J.; Wang, Q.; Ushimaru, R.; Kudo, A.; Naka, H.; Saito, S. Org. Lett. 2015, 17, 2530.
[48] Dang, T. T.; Ramalingam, B.; Seayad, A. M. ACS Catal. 2015, 5, 4082.
[49] Campos, J.; Sharninghausen, L. S.; Manas, M. G.; Crabtree, R. H. Inorg. Chem. 2015, 54, 5079.
[50] Elangovan, S.; Neumann, J.; Sortais, J.-B.; Junge, K.; Darcel, C.; Beller, M. Nat. Commun. 2016, 7, 12641.
[51] Bruneau-Voisine, A.; Wang, D.; Dorcet, V.; Roisnel, T.; Darcel, C.; Sortais, J.-B. J. Catal. 2017, 347, 57.
[52] Liu, Z.; Yang, Z.; Yu, X.; Zhang, H.; Yu, B.; Zhao, Y.; Liu, Z. Adv. Synth. Catal. 2017, 359, 4278.
[53] Goyal, V.; Gahtori, J.; Narani, A.; Gupta, P.; Bordoloi, A.; Natte, K. J. Org. Chem. 2019, 84, 15389.
[54] Liang, R.; Li, S.; Wang, R.; Lu, L.; Li, F. Org. Lett. 2017, 19, 5790.
[55] Zhu, L.; Wang, L.-S.; Li, B.-J.; Fu, B.-Q.; Zhang, C.-Q.; Li, W. Chem. Commun. 2016, 52, 6371.
[56] Jiang, X.; Wang, C.; Wei, Y.; Xue, D.; Liu, Z.; Xiao, J. Chem.-Eur. J. 2014, 20, 58.
[57] Wang, H.; Huang, Y.; Dai, X.; Shi, F. Chem. Commun. 2017, 53, 5542.
[58] Ge, X.; Luo, C.; Qian, C.; Yu, Z.; Chen, X. RSC Adv. 2014, 4, 43195.
[59] Li, Y.; Sorribes, I.; Vicent, C.; Junge, K.; Beller, M. Chem.-Eur. J. 2015, 21, 16759.
Outlines

/