Research Progress of Covalent Organic Frameworks in Sensing

  • Yu Ge ,
  • Wang Cheng
Expand
  • College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072

Received date: 2020-03-07

  Revised date: 2020-04-05

  Online published: 2020-04-17

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21772149, 21975188).

Abstract

Covalent organic frameworks (COFs) are an emerging class of porous crystalline organic materials connected by covalent bonds. Owing to their high crystallinity, low density, large surface area and designable structures, COFs have potential applications in molecular adsorption and separation, catalysis, optoelectronic devices, and energy storage. Recently, due to their inherent characteristics, COFs have attracted a lot of interests in sensing. The research progress of COFs in sensing, including explosive sensing, humidity sensing, metal ions sensing, pH sensing, biosensing and gas sensing is summarized. Finally, a perspective of the application of COFs in sensing is given.

Cite this article

Yu Ge , Wang Cheng . Research Progress of Covalent Organic Frameworks in Sensing[J]. Chinese Journal of Organic Chemistry, 2020 , 40(6) : 1437 -1447 . DOI: 10.6023/cjoc202003018

References

[1] (a) Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
(b) Diercks, C. S.; Yaghi, O. M. Science 2017, 355, 923.
(c) Chen, X.; Geng, K.; Liu, R.; Tan, K. T.; Gong, Y.; Li, Z.; Tao, S.; Jiang, Q.; Jiang, D. Angew. Chem. Int. Ed. 2020, 59, 5050.
[2] Cooper, A. I. Adv. Mater. 2009, 21, 1291.
[3] Yuan, Y.; Zhu, G. ACS Cent. Sci. 2019, 5, 409.
[4] Tan, L.; Tan, B. Chem. Soc. Rev. 2017, 46, 3322.
[5] Baldwin, L. A.; Crowe, J. W.; Pyles, D. A.; McGrier, P. L. J. Am. Chem. Soc. 2016, 138, 15134.
[6] Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.
[7] (a) Li, Y.; Ben, T.; Qiu, S. Acta Chim. Sinica 2015, 73, 605(in Chinese). (李艳强, 贲腾, 裘式纶, 化学学报, 2015, 73, 605.)
(b) Zeng, Y.; Zou, R.; Zhao, Y. Adv. Mater. 2016, 28, 2855.
(c) Yuan, S.; Li, X.; Zhu, J.; Zhang, G.; Van Puyvelde, P.; Van der Bruggen, B. Chem. Soc. Rev. 2019, 48, 2665.
(d) Gao, C.; Li, J.; Yin, S.; Lin, G.; Ma, T.; Meng, Y.; Sun, J.; Wang, C. Angew. Chem., Int. Ed. 2019, 58, 9770.
[8] (a) Xu, H. S.; Ding, S. Y.; An, W. K.; Wu, H.; Wang, W. J. Am. Chem. Soc. 2016, 138, 11489.
(b) Han, X.; Xia, Q.; Huang, J.; Liu, Y.; Tan, C.; Cui, Y. J. Am. Chem. Soc. 2017, 139, 8693.
(c) Wei, P. F.; Qi, M. Z.; Wang, Z. P.; Ding, S. Y.; Yu, W.; Liu, Q.; Wang, L. K.; Wang, H. Z.; An, W. K.; Wang, W. J. Am. Chem. Soc. 2018, 140, 4623.
(d) Chen, R.; Shi, J. L.; Ma, Y.; Lin, G.; Lang, X.; Wang, C. Angew. Chem., Int. Ed. 2019, 58, 6430.
(e) Sharma, R. K.; Yadav, P.; Yadav, M.; Gupta, R.; Rana, P.; Srivastava, A.; Zbořil, R.; Varma, R. S.; Antonietti, M.; Gawande, M. B. Mater. Horiz. 2020, 7, 411.
[9] (a) Bertrand, G. H.; Michaelis, V. K.; Ong, T. C.; Griffin, R. G.; Dinca, M. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 4923.
(b) Dogru, M.; Handloser, M.; Auras, F.; Kunz, T.; Medina, D.; Hartschuh, A.; Knochel, P.; Bein, T. Angew. Chem., Int. Ed. 2013, 52, 2920.
(c) Bessinger, D.; Ascherl, L.; Auras, F.; Bein, T. J. Am. Chem. Soc. 2017, 139, 12035.
(d) Jin, E.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q.; Jiang, D. Science 2017, 357, 673.
(e) Ding, H.; Li, J.; Xie, G.; Lin, G.; Chen, R.; Peng, Z.; Yang, C.; Wang, B.; Sun, J.; Wang, C. Nat. Commun. 2018, 9, 5234.
[10] (a) Das, G.; Biswal, B. P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, M.; Heine, T.; Verma, S.; Banerjee, R. Chem. Sci. 2015, 6, 3931.
(b) Ding, S. Y.; Dong, M.; Wang, Y. W.; Chen, Y. T.; Wang, H. Z.; Su, C. Y.; Wang, W. J. Am. Chem. Soc. 2016, 138, 3031.
(c) Li, Z.; Huang, N.; Lee, K. H.; Feng, Y.; Tao, S.; Jiang, Q.; Nagao, Y.; Irle, S.; Jiang, D. J. Am. Chem. Soc. 2018, 140, 12374.
(d) Liu, X.; Huang, D.; Lai, C.; Zeng, G.; Qin, L.; Wang, H.; Yi, H.; Li, B.; Liu, S.; Zhang, M.; Deng, R.; Fu, Y.; Li, L.; Xue, W.; Chen, S. Chem. Soc. Rev. 2019, 48, 5266.
[11] (a) Liao, H.; Ding, H.; Li, B.; Ai, X.; Wang, C. J. Mater. Chem. A 2014, 2, 8854.
(b) Wang, S.; Wang, Q.; Shao, P.; Han, Y.; Gao, X.; Ma, L.; Yuan, S.; Ma, X.; Zhou, J.; Feng, X.; Wang, B. J. Am. Chem. Soc. 2017, 139, 4258.
(c) Mulzer, C. R.; Shen, L.; Bisbey, R. P.; McKone, J. R.; Zhang, N.; Abruna, H. D.; Dichtel, W. R. ACS Cent. Sci. 2016, 2, 667.
(d) Zhou, J.; Wang, B. Chem. Soc. Rev. 2017, 46, 6927.
(e) Peng, Z.; Ding, H.; Chen, R.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681(in Chinese). (彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77, 681.)
[12] (a) Kandambeth, S.; Dey, K.; Banerjee, R. J. Am. Chem. Soc. 2019, 141, 1807.
(b) Chen, X.; Geng, K.; Liu, R.; Tan, K. T.; Gong, Y.; Li, Z.; Tao, S.; Jiang, Q.; Jiang, D. Angew. Chem., Int. Ed. 2019, 58, 2.
(c) Zhou, B.; Chen, L. Acta Chim. Sinica 2015, 73, 487(in Chinese). (周宝龙, 陈龙, 化学学报, 2015, 73, 487.)
[13] (a) Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. Angew. Chem., Int. Ed. 2008, 47, 8826.
(b) Dalapati, S.; Gu, C.; Jiang, D. Small 2016, 12, 6513.
(c) Dong, J.; Li, X.; Peh, S. B.; Yuan, Y. D.; Wang, Y.; Ji, D.; Peng, S.; Liu, G.; Ying, S.; Yuan, D.; Jiang, J.; Ramakrishna, S.; Zhao, D. Chem. Mater. 2018, 31, 146.
(d) Dalapati, S.; Jin, E.; Addicoat, M.; Heine, T.; Jiang, D. J. Am. Chem. Soc. 2016, 138, 5797.
[14] (a) Zhang, W.; Qiu, L. G.; Yuan, Y. P.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. J. Hazard. Mater. 2012, 221, 147.
(b) Gao, Q.; Li, X.; Ning, G. H.; Leng, K.; Tian, B.; Liu, C.; Tang, W.; Xu, H. S.; Loh, K. P. Chem. Commun. 2018, 54, 2349.
(c) Kaleeswaran, D.; Vishnoi, P.; Murugavel, R. J. Mater. Chem. C 2015, 3, 7159.
(d) Dalapati, S.; Jin, S.; Gao, J.; Xu, Y.; Nagai, A.; Jiang, D. J. Am. Chem. Soc. 2013, 135, 17310.
(e) Lin, G.; Ding, H.; Yuan, D.; Wang, B.; Wang, C. J. Am. Chem. Soc. 2016, 138, 3302.
(f) Pang, C.; Luo, S.; Hao, Z.; Gao, J.; Huang, Z.; Yu, J.; Yu, S.; Wang, Z. Chin. J. Org. Chem. 2018, 38, 2606(in Chinese). (庞楚明, 罗时荷, 郝志峰, 高健, 黄召昊, 余家海, 余思敏, 汪朝阳, 有机化学, 2018, 38, 2606.)
[15] (a) Sikarwar, S.; Yadav, B. C. Sens. Actuator, A 2015, 233, 54.
(b) Yeo, T. L.; Sun, T.; Grattan, K. T. V. Sens. Actuator, A 2008, 144, 280.
[16] (a) Jhulki, S.; Evans, A. M.; Hao, X. L.; Cooper, M. W.; Feriante, C. H.; Leisen, J.; Li, H.; Lam, D.; Hersam, M. C.; Barlow, S.; Bredas, J. L.; Dichtel, W. R.; Marder, S. R. J. Am. Chem. Soc. 2020, 142, 783.
(b) Ascherl, L.; Evans, E. W.; Hennemann, M.; Di Nuzzo, D.; Hufnagel, A. G.; Beetz, M.; Friend, R. H.; Clark, T.; Bein, T.; Auras, F. Nat. Commun. 2018, 9, 3802.
(c) Huang, W.; Jiang, Y.; Li, X.; Li, X.; Wang, J.; Wu, Q.; Liu, X. ACS Appl. Mater. Interfaces 2013, 5, 8845.
(d) Singh, H.; Tomer, V. K.; Jena, N.; Bala, I.; Sharma, N.; Nepak, D.; De Sarkar, A.; Kailasam, K.; Pal, S. K. J. Mater. Chem. A 2017, 5, 21820.
(e) Qian, H. L.; Dai, C.; Yang, C. X.; Yan, X. P. ACS Appl. Mater. Interfaces 2017, 9, 24999.
[17] (a) Bao, B.; Ma, M.; Fan, Q.; Wang, L.; Huang, W. Acta Chim. Sinica 2013, 71, 1379(in Chinese). (鲍碧清, 马明风, 范曲立, 汪联辉, 黄维, 化学学报, 2013, 71, 1379.)
(b) Hu, C.; Huang, D.; Zeng, G.; Cheng, M.; Gong, X.; Wang, R.; Xue, W.; Hu, Z.; Liu, Y. Chem. Eng. J. 2018, 338, 432.
[18] (a) Cui, W. R.; Jiang, W.; Zhang, C. R.; Liang, R. P.; Liu, J; Qiu, J. D. ACS Sustainable Chem. Eng. 2020, 8, 445.
(b) Chen, G.; Lan, H. H.; Cai, S. L.; Sun, B.; Li, X. L.; He, Z. H.; Zheng, S. R.; Fan, J.; Liu, Y.; Zhang, W. G. ACS Appl. Mater. Interfaces 2019, 11, 12830.
(c) Wang, T.; Xue, R.; Chen, H.; Shi, P.; Lei, X.; Wei, Y.; Guo, H.; Yang, W. New J. Chem. 2017, 41, 14272.
(d) Zhou, Z.; Zhong, W.; Cui, K.; Zhuang, Z.; Li, L.; Li, L.; Bi, J.; Yu, Y. Chem. Commun. 2018, 54, 9977.
(e) Zhang, T.; Gao, C.; Huang, W.; Chen, Y.; Wang, Y.; Wang, J. Talanta 2018, 188, 578.
(f) Wang, R.; Ji, W.; Huang, L.; Guo, L.; Wang, X. Anal. Lett. 2019, 52, 1757.
[19] Li, Z.; Zhang, Y.; Xia, H.; Mu, Y.; Liu, X. Chem. Commun. 2016, 52, 6613.
[20] Li, M.; Cui, Z.; Pang, S.; Meng, L.; Ma, D.; Li, Y.; Shi, Z.; Feng, S. J. Mater. Chem. C 2019, 7, 11919.
[21] Zafar, S.; D'Emic, C.; Afzali, A.; Fletcher, B.; Zhu, Y.; Ning, T. Nanotechnology 2011, 22, 405501.
[22] Liu, Y. Y.; Wu, M.; Zhu, L. N.; Feng, X. Z.; Kong, D. M. Chem. Asian J. 2015, 10, 1304.
[23] (a) Zhang, Y.; Shen, X.; Feng, X.; Xia, H.; Mu, Y.; Liu, X. Chem. Commun. 2016, 52, 11088.
(b) Chen, L.; He, L.; Ma, F.; Liu, W.; Wang, Y.; Silver, M. A.; Chen, L.; Zhu, L.; Gui, D.; Diwu, J.; Chai, Z.; Wang, S. ACS Appl. Mater. Interfaces 2018, 10, 15364.
(c) Xu, M.; Wang, L.; Xie, Y.; Song, Y.; Wang, L. Sens. Actuator, B 2019, 281, 1009.
(d) Ma, Y.; Yuan, F.; Yu, Y.; Zhou, Y..; Zhang, X. Anal. Chem. 2020, 92, 1424.
[24] (a) Zhang, X.; Chi, K. N.; Li, D. L.; Deng, Y.; Ma, Y. C.; Xu, Q. Q.; Hu, R.; Yang, Y. H. Biosens. Bioelectron. 2019, 129, 64.
(b) Wang, J.; Yan, B. Anal. Chem. 2019, 91, 13183.
(c) Li, W.; Yang, C. X.; Yan, X. P. Chem. Commun. 2017, 53, 11469.
(d) Huang, C.; Chen, H.; Li, F.; An, S. Chin. J. Org. Chem. 2019, 39, 2467(in Chinese). (黄池宝, 陈会, 李福琴, 安思雅, 有机化学, 2019, 39, 2467.)
[25] (a) Yang, T.; Cui, Y.; Chen, H.; Li, W. Acta Chim. Sinica 2017, 75, 339(in Chinese). (杨涛, 崔亚男, 陈怀银, 李伟华, 化学学报, 2017, 75, 339.)
(b) Xiong, M.; Rong, Q.; Meng, H. M.; Zhang, X. B. Biosens. Bioelectron. 2017, 89, 212.
[26] Yan, X.; Song, Y.; Liu, J.; Zhou, N.; Zhang, C.; He, L.; Zhang, Z.; Liu, Z. Biosens. Bioelectron. 2019, 126, 734.
[27] Wang, P.; Zhou, F.; Zhang, C.; Yin, S. Y.; Teng, L.; Chen, L.; Hu, X. X.; Liu, H. W.; Yin, X.; Zhang, X. B. Chem. Sci. 2018, 9, 8402.
[28] Zanoli, L. M.; D'Agata, R.; Spoto, G. Anal. Bioanal. Chem. 2012, 402, 1759.
[29] Peng, Y.; Huang, Y.; Zhu, Y.; Chen, B.; Wang, L.; Lai, Z.; Zhang, Z.; Zhao, M.; Tan, C.; Yang, N.; Shao, F.; Han, Y.; Zhang, H. J. Am. Chem. Soc. 2017, 139, 8698.
[30] Li, W.; Yang, C.; Yan, X. Chem. Commun. 2017, 53, 11469.
[31] Yang, Y.; Zhao, Z.; Yang, Y.; Li, G.; Hao, C. New J. Chem. 2019, 43, 9274.
[32] (a) Xie,Y.; Ding, S.; Liu, J.; Wang, W.; Zheng, Q. J. Mater. Chem. C 2015, 3, 10066.
(b) Kulkarni, R.; Noda, Y.; Kumar Barange, D.; Kochergin, Y. S.; Lyu, P.; Balcarova, B.; Nachtigall, P.; Bojdys, M. J. Nat. Commun. 2019, 10, 3228.
(c) Meng, Z.; Stolz, R. M.; Mirica, K. A. J. Am. Chem. Soc. 2019, 141, 11929.
(d) Pang, Y.; Yue, Q.; Huang, Y.; Yang, C.; Shen, X. Talanta 2020, 206, 120194.
(e) Zhang, S.; Yang, Q.; Li, Z. Anal. Bioanal. Chem. 2017, 409, 3429.
[33] Cui, F.; Xie, J.; Jiang, S.; Gan, S.; Ma, D.; Liang, R.; Jiang, G.; Zhao, X. Chem. Commun. 2019, 55, 4550.
[34] Yang, Y.; Zhao, Z.; Yang, Y.; Li, G.; Hao, C. New J. Chem. 2019, 43, 9274.
[35] He, Z.; Gong, S.; Cai, S.; Yan, Y.; Chen, G.; Li, X.; Zheng, S.; Fan, J.; Zhang, W. Cryst. Growth Des. 2019, 19, 3543.
Outlines

/