Recent Progress in Fluorescent Chemosensors for Selenium Compounds

  • Zhang Jidong ,
  • Zhan Yan ,
  • Li-Hu Yuewen ,
  • Qi Yi ,
  • Wang Ruipeng ,
  • Meng Li
Expand
  • a Quality Supervision and Inspection Centre of Se-Enriched Food of Shaanxi Province, Research Centre of New Materials, School of Chemistry & Chemical Engineering, Ankang Univerisity, Ankang, Shaanxi 725000;
    b Key Laboratory of Se-Enriched Products Development and Quality Control of Ministry of Agriculture, Se-Enriched Products Research Institute of China, Ankang, Shaanxi 725000

Received date: 2020-02-19

  Revised date: 2020-04-09

  Online published: 2020-04-23

Supported by

Project supported by the Youth Foundation of Shaanxi Provincial Science & Technology Department (No. 2019JQ-504), the Key Laboratory of Se-Enriched Products Development and Quality Control, Ministry of Agriculture (No. Se-2018B02), the Doctor's Initial Funding of Ankang University (No. 2018AYQDZR06) and the National Undergraduate Training Program for Innovation and Entrepreneurship (Nos. 201911397007, 201911397016).

Abstract

Selenium (Se) is an important trace element in life and has been associated with many diseases. Protein containing selenium has a wide range of biological effects, such as antioxidant, anti-inflammatory and promotes the production of thyroid hormone action. In the past few decades, selenium has attracted great attention because of its important role in biology, which is mainly attributed to the redox of Se elements and the properties of hard and soft protons. In recent years, with the development of chemical simulation technology, a large number of selenium-related fluorescent chemosensors have been developed to monitor physiological and pathological processes. Fluorescent chemosensors containing selenium materials, such as selenocysteine (Sec), hydrogen selenide and Se(IV) are reviewed. The development tendency of the sensing Se compounds is prospected.

Cite this article

Zhang Jidong , Zhan Yan , Li-Hu Yuewen , Qi Yi , Wang Ruipeng , Meng Li . Recent Progress in Fluorescent Chemosensors for Selenium Compounds[J]. Chinese Journal of Organic Chemistry, 2020 , 40(7) : 1847 -1859 . DOI: 10.6023/cjoc202002025

References

[1] Oldfield, J. E. New Zeal. Vet. J. 1974, 22, 85.
[2] Schwarz, K.; Foltz, C. M. J. Am. Chem. Soc. 1957, 79, 3292.
[3] Ogawa-Wong, A. N.; Berry, M. J.; Seale, L. A. Nutrients 2016, 8, 80.
[4] Rayman, M. P. The Lancet 2000, 356, 233.
[5] Rayman, P. M. The Lancet 2012, 379, 1256.
[6] Du, X.; Wang, C.; Liu, Q. Curr. Top. Med. Chem. 2016, 16, 835.
[7] Bhabak, K. P.; Mugesh, G. Acc. Chem. Res. 2010, 43, 1408.
[8] Lou, Z.; Li, P.; Han, K. Acc. Chem. Res. 2015, 48, 1358.
[9] Manjare S. T.; Kim, Y.; Churchill, D. G. Acc. Chem. Res. 2014, 47, 2985.
[10] Reich, H. J.; Hondal, R. J. ACS Chem. Biol. 2016, 11, 821.
[11] Zhang, J.; Zhang, J.; Yan, Z.; Xie, J. Chin. J. Org. Chem. 2019, 39, 3051(in Chinese). (张继东, 张俊, 严瞻, 谢娟平, 有机化学, 2019, 39, 3051.)
[12] Yang, M.; Su, N.; Li, Y.; Wang, L.; Ma, L.; Zhang, Y.; Li, J.; Yang, B.; Kang, L. Chin. J. Org. Chem. 2018, 38, 636(in Chinese). (杨美盼, 苏娜, 李玉香, 王莉, 马利锋, 张媛, 李靖, 杨秉勤, 康龙丽, 有机化学, 2018, 38, 636.)
[13] Liu, H.-W.; Chen, L.; Xu, C.; Li, Z.; Zhang, H.; Zhang, X.-B.; Tan, W. Chem. Rev. 2015, 115, 7840.
[14] Gao, M.; Yu, F.; Lv, C.; Choo, J.; Chen, L. Chem. Soc. Rev. 2017, 46, 2237.
[15] Kwok, R. T. K.; Leung, C. W. T.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2015, 44, 4228.
[16] Li, J.; Chen, L.; Du, L.; Li, M. Chem. Soc. Rev. 2013, 42, 662.
[17] Xu, Z.; Kim, S. K.; Yoon, J. Chem. Soc. Rev. 2010, 39, 1457.
[18] Yue, Y.; Huo, F.; Cheng, F.; Zhu, X.; Mafireyi, T.; Strongin, R. M.; Yin, C. Chem. Soc. Rev. 2019, 48, 4155.
[19] Weekley, C. M.; Harris, H. H. Chem. Soc. Rev. 2013, 42, 8870.
[20] Maeda, H.; Katayama, K.; Matsuno, H.; Uno, T. Angew. Chem., Int. Ed. 2006, 45, 1810.
[21] Cheng, D.; Pan, Y.; Yin, B.-C.; Yuan, L.; Zhang, X. B. Chin. Chem. Lett. 2017, 28, 1987.
[22] Zhang, B.; Ge, C.; Yao, J.; Liu, Y.; Xie, H.; Fang, J. J. Am. Chem. Soc. 2015, 137, 757.
[23] Zhang, H.; Li, M.; Feng, W.; Feng, G. Dyes Pigm. 2018, 149, 475.
[24] Sun, Q.; Yang, S.-H.; Wu, L.; Dong, Q.-J.; Yang, W.-C.; Yang, G.-F. Anal. Chem. 2016, 88, 6084.
[25] Li, J.; Zhang, C.-F.; Yang, S. -H.; Yang, W. C.; Yang, G.-F. Anal. Chem. 2014, 86, 3037.
[26] Feng, W.; Li, M.; Sun, Y.; Feng, G. Anal. Chem. 2017, 89, 6106.
[27] Li, M.; Feng, W.; Zhai, Q.; Feng, G. Biosens. Bioelectron. 2017, 87, 894.
[28] Zhang, P.; Ding, Y.; Liu, W.; Niu, G.; Zhang, H.; Ge, J.; Wu, J.; Li, Y.; Wang, P. Sens. Actuators, B 2018, 264, 234.
[29] Tian, Y.; Xin, F.; Gao, C.; Jing, J.; Zhang, X. J. Mater. Chem. B 2017, 5, 6890.
[30] Kong, F.; Hu, B.; Gao, Y.; Xu, K.; Pan, X.; Huang, F.; Zheng, Q.; Chen, H.; Tang, B. Chem. Commun. 2015, 51, 3102.
[31] Han, X.; Wang, R.; Song, X.; Yu, F.; Chen, L. Anal. Chem. 2018, 90, 8108.
[32] Luo, X. Z.; Wang, R.; Lv, C. Z.; Chen, G.; You, J. M.; Yu, F. B. Anal. Chem. 2020, 92, 1589.
[33] Han, X. Y.; Song, X. Y.; Yu, F. B.; Chen, L. X. Adv. Funct. Mater. 2017, 1700761.
[34] Zhang, S.; Wang, Q.; Liu, X.; Zhang, J.; Yang, X.-F.; Li, Z.; Li, H. Anal. Chem. 2018, 90, 4119.
[35] Chen; H.; Dong, B.; Tang, Y.; Lin, W. Chem.-Eur. J. 2015, 21, 11696.
[36] Zhang, L.; Kai, X.; Zhang, Y.; Zheng, Y.; Xue, Y.; Yin, X.; Zhao, J. Analyst 2018, 143, 4860.
[37] Zhang, L.; Shi, Y.; Sheng, Z.; Zhang, Y.; Kai, X.; Li, M.; Yin, X. ACS Sens. 2019, 4, 3147.
[38] Wang, C.; Chen, Q.; Wang, Z.; Zhang, X. Angew. Chem., Int. Ed. 2010, 49, 8794.
[39] Cheng, Y.; He, C.; Xiao, C.; Ding, J.; Ren, K.; Yu, S.; Zhuang, X.; Chen, X. Polym. Chem. 2013, 4, 3851.
[40] Du, J.-Z.; Du, X.-J.; Mao, C.-Q.; Wang, J. J. Am. Chem. Soc. 2011, 133, 17560.
[41] Yan, Q.; Zhao, Y. J. Am. Chem. Soc. 2013, 135, 16300.
[42] Nan Y.; Zhao, W.; Xu, X.; Au, C.-T.; Qiu, R. RSC Adv. 2015, 5, 69299.
[43] Wang, Q.; Zhang, S. G.; Zhong, Y. G.; Yang, X. F.; Li, Z.; Li, H. Anal. Chem. 2017, 89, 1734.
[44] Weekley. C.; Aitken, J.; Vogt, S.; Finney, L.; Paterson, D.; Jonge, M.; Howard, D.; Witting, P.; Musgrave, I.; Harris, H. J. Am. Chem. Soc. 2011, 133, 18272.
[45] Reich, H. J.; Hondal, R. J. ACS Chem. Biol. 2016, 11, 821.
[46] Wu, D.; Chen, L.; Kwon, N.; Yoon, J. Y. Chem 2016, 674.
[47] Kong, F.; Ge, L.; Pan, X.; Xu, K.; Liu, X.; Tang, B. Chem. Sci. 2016, 7, 1051.
[48] Areti, S.; Verma, S. K.; Bellare, J.; Rao, C. P. Anal. Chem. 2016, 88, 7259.
[49] Kong, F.; Zhao, Y.; Liang, Z.; Liu, X.; Pan, X.; Luan, D.; Xu, K.; Tang, B. Anal. Chem. 2017, 89, 688.
[50] Dai, C.-G.; Wang, J. L.; Song, Q.-H. J. Mater. Chem. B 2016, 4, 6726.
[51] Tian, Y.; Xin, F. Y.; Jing, J.; Zhang, X. L. J. Mater. Chem. B 2019, 7, 2829.
[52] Liu, X. J.; Hu, B.; Cheng, R.-R.; Kong, F. P.; Pan, X. H.; Xu, K. H.; Tang, B. Chem. Commun. 2016, 52, 6693.
[53] Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A. Chem. Soc. Rev. 2012, 41, 2740.
[54] Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Nat. Methods 2008, 5, 763.
[55] Hu, B.; Cheng, R.; Liu, X.; Pan, X.; Kong, F.; Gao, W.; Xu, K.; Tang, B. Biomaterials 2016, 92, 81.
[56] Liang, S.; Chen, J.; Pierce, D. T.; Zhao, J. X. ACS Appl. Mater. Interfaces 2013, 5, 5165.
[57] Chen, L.; Tian, X.; Zhao, Y.; Li, Y.; Yang, C.; Zhou, Z.; Liu, X. Analyst 2016, 141, 4685.
[58] Chen, J.; Zhu, Y.; Zhang, Y. RSC Adv. 2016, 6, 62193.
Outlines

/