Copper-Catalyzed Arylated Etherification of 2,2-Difluoroethanol and Its Mechanistic Study

  • Huang Shuaishuai ,
  • Nie Yixue ,
  • Yang Jingjing ,
  • Zheng Zhanjiang ,
  • Cao Jian ,
  • Xu Zheng ,
  • Xu Liwen
Expand
  • a Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121;
    b Collaborative Innovation Center for Fluorosilicone-based Fine Chemicals and Materials, Hangzhou Normal University, Hangzhou 311121

Received date: 2020-03-14

  Revised date: 2020-04-17

  Online published: 2020-04-23

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21703051, 21801056) and the Hangzhou Science and Technology Bureau of China (No. 20180432B05).

Abstract

Both organofluorine and organosilicon compounds are one of the most important types of high-tech product in elementorganic chemistry, and have been received much attetions in the past decades. Considering the imporatance of difluoroethanol moeity in pesticides, the development of a mild and efficient copper-catalyzed arylated etherification reaction of difluoroethanol is highly desirable. Herein, a mild and efficient method for the preparation of difluoroethyl aryl ethers was developed by the copper-catalyzed Ullmann-type arylated etherification reaction of aryl bromides or iodides with 2,2-difluoroethanol. This reaction proceeds smoothly in the presence of CuI and 8-hydroxyquinoline/t-BuOK, and has a broad substrate scope. ESI-MS analysis supported the existence of LCu(Ⅲ)Ar(OR) species during this catalytic reaction. Further density functional theory (DFT) calculations suggest a proposed mechanism of arylated etherification reaction involving oxidative addition, followed by nucleophile substitution and reductive elimination would be rational.

Cite this article

Huang Shuaishuai , Nie Yixue , Yang Jingjing , Zheng Zhanjiang , Cao Jian , Xu Zheng , Xu Liwen . Copper-Catalyzed Arylated Etherification of 2,2-Difluoroethanol and Its Mechanistic Study[J]. Chinese Journal of Organic Chemistry, 2020 , 40(7) : 2018 -2025 . DOI: 10.6023/cjoc202003035

References

[1] (a) Nakajima, T.; Groult, H. Fluorinated Materials for Energy Conversion, Elsevier, London, 2005.
(b) Wong, S.; Ma, H.; Jen, A. K. Y.; Barto, R.; Frank, C. W. Macromolecules 2003, 36, 8001.
(c) Wong, S.; Ma, H.; Jen, A. K. Y.; Barto, R.; Frank, C. W. Macromolecules 2004, 37, 5578.
[2] (a) Tressaud, A.; Haufe, G. Fluorine and Health:Molecular Imaging, Biomedical Materials and Pharmaceuticals, Elsevier, London, 2008.
(b) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley, Hoboken, 2009.
(c) Xu, X. H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.
[3] Jeschke, P. ChemBioChem 2004, 5, 570.
[4] (a) Banks, R. E.; Smart, B. E.; Tatlow, J. C. Organofluorine Chemistry, Principles and Commercial Applications, Plenum, New York, 1994.
(b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(c) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
[5] (a) Gao, X.; Cheng, R.; Xiao, Y. L.; Wan, X. L.; Zhang, X. G. Chem 2019, 5, 2987.
(b) Begue, J. P.; Bonnet-Delpon, D. J. Fluorine Chem. 2006, 127, 992.
(c) Cerqueira, N. M. F. S. A.; Fernandes, P. A.; Ramos, M. J. Chemistry 2007, 13, 8507.
(d) Teague, S. J. Drug Discovery Today 2011, 16, 398.
(e) Cheng, J. J.; Giguere, P. M.; Onajole, O. K.; Lv, W.; Gaisin, A.; Gunosewoyo, H.; Schmerberg, C.; Pogorelov, V. M.; Rodriguiz, R. M.; Vistoli, G.; Wetsel, W. C.; Roth, B. L.; Kozikowski, A. P. J. Med. Chem. 2015, 58, 1992.
(f) Johan, B. WO 2010132016, 2010.
(g) Gregory, B. M. WO 02072528, 2002.
(h) Gernert, D. L.; Ajamie, R.; Ardecky, R. A.; Bell, M. G.; Leibowitz, M. D.; Mais, D. A.; Mapes, C. M.; Michellys, P. Y.; Rungta, D.; Reifel-Miller, A.; Tyhonas, J. S.; Yumibe, N.; Grese, T. A. Bioorg. Med. Chem. Lett. 2003, 13, 3191.
(i) Ulrich, K. WO 2005085203, 2005. (j) Ulrich, K. WO 2006092417, 2006.
[6] (a) Irrupe, Jr. J.; Casas, J.; Messeguer, A. Bioorg. Med. Chem. Lett. 1993, 3, 179.
(b) Thomas, W. J.; Ronald, S. T. J. Agric. Food Chem. 2005, 53, 7179.
[7] (a) Schwan, G.; Asskar, G. B.; Hcfgen, N.; Kubicova, L.; Funke, U.; Egerland, U.; Zahn, M.; Nieber, K.; Scheunemann, M.; Strter, N.; Brust, P.; Briel, D. ChemMedChem 2014, 9, 1476.
(b) OShea, P. D.; Gauvreau, D.; Gosselin, F.; Hughes, G.; Nadeau, C.; Roy, A.; Scott Shultz, C. J. Org. Chem. 2009, 74, 4547.
(c) Kamal, A.; Pratap, T. B.; Ramana, K. V.; Ramana, A. V.; Babu, A. H. Tetrahedron Lett. 2002, 43, 7353.
(d) Camps, F.; Coll, J.; Messeguer, A.; Perics, M. A. Synthesis 1980, 727.
[8] Fuhrmann, E.; Talbiersky, J. Org. Process Res. Dev. 2005, 9, 206.
[9] (a) Zhang, H.; Ruiz-Castillo, P.; Buchwald, S. L. Org. Lett. 2018, 20, 1580.
(b) Gowrisankar, S.; Sergeev, A. G.; Anbarasan, P.; Spannenberg, A.; Neumann, H.; Beller, M. J. Am. Chem. Soc. 2010, 132, 11592.
(c) Sawatzky, R. S.; Hargreaves, B. K. V.; Stradiotto, M. Eur. J. Org. Chem. 2016, 2016, 2444.
(d) Dumrath, A.; Wu, X. F.; Neumann, H.; Spannenberg, A.; Jackstell, R.; Beller, M. Angew. Chem., Int. Chem. 2010, 49, 8988.
(e) Mann, G.; Incarvito, C.; Rheingold, A. L.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 3224.
[10] Rangarajan, T. M.; Singh, R.; Brahma, R.; Devi, K.; Pal Singh, R.; Singh, R. P.; Prasad, A. K. Chem.-Eur. J. 2014, 20, 14218.
[11] (a) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem. Soc. 1998, 120, 12459.
(b) Goodbrand, H. B.; Hu, N. X. J. Org. Chem. 1999, 64, 670.
(c) Fagan, P. J.; Hauptman, E.; Shapiro, R.; Casalnuovo, A. J. Am. Chem. Soc. 2000, 122, 5043.
[12] (a) Suzuki, H.; Matuoka, T.; Ohtsuka, I.; Osuka, A. Synthesis 1985, 499.
(b) Sugata, H.; Tsubogo, T.; Kino, Y.; Uchiro, H. Tetrahedron Lett. 2017, 58, 1015.
[13] (a) Wolter, M.; Nordmann, G.; Job, E.; Buchwald, S. L. Org. Lett. 2002, 4, 973.
(b) Tlili, A.; Xia, N.; Monnier, F.; Taillefer, M. Angew. Chem., Int. Chem. 2009, 48, 8725.
(c) Chen, Z. X.; Jiang, Y. W.; Zhang, L.; Guo, Y. L.; Ma, D. W. J. Am. Chem. Soc. 2019, 141, 3541.
(d) Cai, Q.; Zhou, W. Chin. J. Chem. 2020, 38, 879.
[14] (a) Huang, R. L.; Huang, Y. J.; Lin, X. X.; Rong, M.; Weng, Z. Angew. Chem., Int. Ed. 2015, 54, 5736.
(b) Vuluga, D.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Eur. J. Org. Chem. 2009, 3513.
[15] Niu, J. J.; Guo, P. R.; Kang, J. T.; Li, Z. G.; Xu, J. W.; Hu, S. J. J. Org. Chem. 2009, 74, 5075.
[16] (a) Qian, C.; Zhu, W.; Liu, J.; Wang, X.; Qiu, L. Chin. J. Org. Chem. 2019, 39, 1695(in Chinese). (钱存卫, 朱文倩, 刘俊龙, 王雪敏, 仇立干, 有机化学, 2019, 39, 1695.)
(b) Liu, X.; Chen, W.; Ni, B.; Chen, X.; Qian, C.; Ge, X. Chin. J. Org. Chem. 2018, 38, 1703(in Chinese). (刘学民, 陈雯, 倪邦庆, 陈新志, 钱超, 葛新, 有机化学, 2018, 38, 1703.)
(c) Hu, X.; Yang, B.; Yao, W.; Wang, D. Chin. J. Org. Chem. 2018, 38, 3296(in Chinese). (胡昕宇, 杨伯斌, 姚玮, 王大伟, 有机化学, 2018, 38, 3296.)
[17] (a) Ye, D.; Huang, R.; Zhu, H.; Zou, L.; Wang, D. Org. Chem. Front. 2019, 6, 62.
(b) Hu, W.; Zhang, Y.; Zhu, H.; Ye, D.; Wang, D. Green Chem. 2019, 21, 5345.
(c) Wang, D.; Zhao, K.; Xu, C.; Miao, H.; Ding, Y. ACS Catal. 2014, 4, 3910.
[18] (a) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676.
(b) Cristau, H. J.; Cellier, P. P.; Spinddler, J. F.; Taillefer, M. Chem.- Eur. J. 2004, 10, 5607.
(c) Xie, X.; Cai, G.; Ma, D. Org. Lett. 2005, 7, 4693.
(d) Xie, X.; Chen, Y.; Ma, D. J. Am. Chem. Soc. 2006, 128, 16050.
[19] (a) Yu, H. Z.; Jiang, Y. Y.; Fu, Y.; Liu, L. J. Am. Chem. Soc. 2010, 132, 18078.
(b) Ribas, X.; Guell, I. Pure Appl. Chem. 2014, 86, 345.
(c) Jones, G. O.; Liu, P.; Houk, K. N.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 6205.
(d) Casitas, A.; Ribas, X. Chem. Sci. 2013, 4, 2301.
(e) Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525.
(f) Lefevre, G.; Franc, G.; Tlili, A.; Adamo, C.; Taillefer, M.; Ciofini, I.; Jutand, A. Organometallics 2012, 31, 7694.
(g) Giri, R.; Brusoe, A.; Troshin, K.; Wang, J. Y.; Font, M.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 793.
(h) Tye, J. W.; Weng, Z.; Giri, R.; Hartwig, J. F. Angew. Chem., Int. Ed. 2010, 49, 2185.
Outlines

/