Synthesis and Cytotoxic Activity of C-Vinyl-rhamnopyranoside Derivatives

  • Ji Yu ,
  • Yao Hui ,
  • Liu Yi ,
  • Huang Nianyu ,
  • Liu Mingguo
Expand
  • Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002

Received date: 2020-03-14

  Revised date: 2020-04-19

  Online published: 2020-04-23

Supported by

Project supported by the National Natural Science Foundation of China (No. 21602123), and the Youth Talent Development Foundation and Scientific Foundation from Graduate School of China Three Gorges University (No. SDYC2016121).

Abstract

A novel gold(I)-catalyzed glycosylation method was described to synthesize C-vinyl-rhamnopyranoside derivatives using stable propargylic carboxylates and 3,4-di-O-acetyl-L-rhamnal as starting materials, based on the tandem intermolecular 1,3-acyloxy migration/Ferrier rearrangement. The C-glycosylation process has been verified by O18 isotopic labeling experiment, and the absolute configuration of synthesized products was determined by X-ray single crystal diffraction. The cytotoxic activity was investigated by methyl thiazolyl tetrazolium (MTT). It indicates that product 3i has strong inhibitory effect on human gastric cancer cells HGC-27 with IC50 18.29 μmol·L-1. The described synthetic method was outstanding with easy-to-operate, high diastereoselectivity, and mild reaction condition.

Cite this article

Ji Yu , Yao Hui , Liu Yi , Huang Nianyu , Liu Mingguo . Synthesis and Cytotoxic Activity of C-Vinyl-rhamnopyranoside Derivatives[J]. Chinese Journal of Organic Chemistry, 2020 , 40(7) : 2051 -2061 . DOI: 10.6023/cjoc202003037

References

[1] (a) Compain, P.; Martin, O. R. Bioorg. Med. Chem. 2001, 9, 3077.
(b) Chen, C. L.; Sparks, S. M.; Martin, S. F. J. Am. Chem. Soc. 2006, 128, 13696.
(c) Štambaský, J.; Hocek, M.; Kocovský, P. Chem. Rev. 2009, 109, 6729.
(d) Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Chem. Rev. 2018, 118, 1495.
(e) Liao, H. Z; Ma, J.; Yao, H.; Liu, X. W. Org. Biomol. Chem. 2018, 16, 1791.
(f) Norsikian, S.; Tresse, C.; François-Eude, M.; Jeanne-Julien, L.; Masson, G.; Servajean, V.; Genta-Jouve, G.; Beau, J. M.; Roull, E. Angew. Chem., Int. Ed. 2020, 59, 6612.
(g) Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Chem. Rev. 2018, 118, 1495.
[2] (a) Hassanzadeh, A.; Gorry, P. A.; Morris, G. A.; Barber, J. J. Med. Chem. 2006, 49, 6334.
(b) Kim, B. G.; Kim, H. J.; Ahn, J. H. J. Agric. Food. Chem. 2012, 60, 11143.
(c) Bhattarai, B.; Nagorny, P. Org. Lett. 2018, 20, 154.
(d) Chauvin, A.; Nepogodiev, S.; Field, R. J. Org. Chem. 2005, 70, 960.
(e) Urabe, D.; Nakagawa, Y.; Mukai, K.; Fukushima, K.; Aoki, N.; Itoh, H.; Nagatomo, M.; Inoue, M. J. Org. Chem. 2018, 83, 13888.
(f) Lee, H. S.; Kim, M. J. J. Agric. Food. Chem. 2002, 50, 1840.
(g) Khatri, H. R.; Bhattarai, B.; Kaplan, W.; Li, Z.; Long, M. J. C.; Aye, Y.; Nagorny, P. J. Am. Chem. Soc. 2019, 141, 4849.
(h) Crich, D.; Li, H. J. Org. Chem. 2002, 67, 4640.
(i) Ashraf Shalaby, M.; Fronczek, F. R.; Younathan, E. S. Carbohydr. Res. 1994, 258, 267
[3] (a) Chen, C. L.; Sparks, S. M.; Martin, S. F. J. Am. Chem. Soc. 2006, 128, 13696.
(b) Tius, M. A.; Gu, X.; Gomez-Galeno, J. J. Am. Chem. Soc. 1990, 112, 8188.
(c) Liao, H. Z; Ma, J.; Yao, H.; Liu, X. W. Org. Biomol. Chem. 2018, 16, 1791.
[4] (a) Cai, X.; Ng, K.; Panesar, H.; Moon, S. J.; Paredes, M.; Ishida, K.; Hertweck, C.; Minehan, T. G. Org. Lett. 2014, 16, 2962.
(b) Liao, H. Z; Ma, J.; Yao, H.; Liu, X. W. Org. Biomol. Chem. 2018, 16, 1791.
[5] Szeja, W.; Grynkiewicz, G.; Bieg, T.; Swierk, P.; Byczek, A.; Papaj, K.; Kitel, R.; Rusin, A. Molecules 2014, 19, 7072.
[6] (a) Gong, H.; Sinisi, R.; Gagne, M. R. J. Am. Chem. Soc. 2007, 129, 1908.
(b) Gong, H.; Gagne, M. R. J. Am. Chem. Soc. 2008, 130, 12177.
(c) Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2010, 49, 7274.
(d) Nicolas, L.; Angibaud, P.; Stansfield, I.; Bonnet, P.; Meerpoel, L.; Reymond, S.; Cossy, J. Angew. Chem., Int. Ed. 2012, 51, 11101.
(e) Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2012, 51, 4140.
(f) Zhao, C.; Jia, X.; Wang, X.; Gong, H. J. Am. Chem. Soc. 2014, 136, 17645.
(g) Zhu, F.; Rourke, M. J.; Yang, T.; Rodriguez, J.; Walczak, M. A. J. Am. Chem. Soc. 2016, 138, 1204.
(h) Adak, L.; Kawamura, S.; Toma, G.; Takenaka, T.; Isozaki, K.; Takaya, H.; Orita, A.; Li, H. C.; Shing, T. K. M.; Nakamura, M. J. Am. Chem. Soc. 2017, 139, 10693.
[7] (a) Koppolu, S. R.; Niddana, R.; Balamurugan, R. Org. Biomol. Chem. 2015, 13, 5094.
(b) Wang, Y.; Liu, M.; Liu, L.; Xia, J. H.; Du, Y. G.; Sun, J. S. J. Org. Chem. 2018, 83, 4111.
[8] (a) Bolitt, V.; Mioskowski, C.; Kollah, R. O.; Manna, S.; Rajapaksa, D.; Falck, J. R. J. Am. Chem. Soc. 1991, 113, 6320.
(b) Fuganti, C.; Serra, S. Synlett 1999, 1999, 1241.
(c) Kulkarni, S. S.; Gervay-Hague, J. Org. Lett. 2006, 8, 5765.
(d) Kaliappan, K. P.; Subrahmanyam, A. V. Org. Lett. 2007, 9, 1121.
(e) Snajdr, I.; Parkan, K.; Hessler, F.; Kotora, M. Beilstein J. Org. Chem. 2015, 11, 1392.
[9] (a) Li, X.; Chen, G.; Garcia-Navarro, R.; Franck, R. W.; Tsuji, M. Immunology 2009, 127, 216.
(b) Yao, Y.; Xiong, C. P.; Zhong, y. L.; Bian, G. W.; Huang, N. Y.; Wang, L.; Zou, K. Adv. Synth. Catal. 2019, 5 1012.
[10] Bai, Y.; Leow, M.; Zeng, J.; Liu, X.-W. Org. Lett. 2011, 13, 5648.
[11] Tatina, M.; Kusunuru, A. K.; Yousuf, S. K.; Mukherjee, D. Chem. Commun. 2013, 49, 11409.
[12] (a) Sharma, B. M.; Rathod, J.; Gonnade, R. G.; Kumar, P. J. Org. Chem. 2018, 83, 9353.
(b) Ruengsangtongkul, S.; Chaisan, N.; Thongsornkleeb, C.; Tummatorn, J. Org. Lett. 2019, 21, 2514.
[13] Veryser, C.; Steurs, G.; Meervelt, L. V.; Borggraeve, W. M. Adv. Synth. Catal. 2017, 359, 1271.
[14] Xiao, Q.; Zheng, F.; Tang, Q.; Wu, J. J.; Xie, J.; Huang, H. D.; Yang, X. B.; Hann, S. S. Cell Physiol. Biochem. 2018, 49, 1615.
[15] (a) Xu, Y.; Wang, W. J.; Cai, Y.; Yang, X.; Wang, P. G.; Zhao, W. RSC Adv. 2014, 4, 46662.
(b) Gagarinov, I. A.; Fang, T.; Liu, L.; Srivastava, A. D.; Boons, G. J. Org. Lett. 2015, 17, 928.
(c) Suzuki, K.; Sulikowski, G. A.; Friesen, R. W.; Danishefsk, S. J. J. Am. Chem. Soc. 1990, 112, 8895.
(d) Wang, J.; Deng, C.; Zhang, Q.; Chai, Y. Org. Lett. 2019, 21, 1103.
[16] (a) Lou, Y.; Cao, P.; Jia, T.; Zhang, Y.; Wang, M.; Liao, J. Angew. Chem., Int. Ed. 2015, 54, 12134.
(b) Reddy, V.; Vijaya, A. R. Org. Lett. 2015, 17, 3390.
(c) Chu, W. D.; Zhang, L. F.; Bao, X.; Zhao, X. H.; Zeng, C.; Du, J. Y.; Zhang, G. B.; Wang, F. X.; Ma, X. Y.; Fan, C. A. Angew. Chem., Int. Ed. 2013, 52, 9229.
(d) Onishi, Y.; Nishimoto, Y.; Yasuda, M.; Baba, A. Org. Lett. 2014, 16, 1176.
Outlines

/