Insight into Catalytic Properties of Supported Palladium Nanoparticles Catalyzed ortho-Directed Sulfonylation

  • Li Pengshuai ,
  • Wu Yun ,
  • Bai Chaolumen ,
  • Bao Yongsheng
Expand
  • Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022

Received date: 2020-03-08

  Revised date: 2020-04-11

  Online published: 2020-04-30

Supported by

Project supported by the National Natural Science Foundation of China (No. 21861030), and the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (No. NJYT-17-A22).

Abstract

Catalyzed by supported palladium nanoparticles, an ortho-directed sulfonylation reaction between 2-phenylpyri-dine and arylsulfonyl chlorides has been developed. The full oxidation-state change of palladium was detected in the X-ray photoelectron spectroscopy (XPS) analysis of the supported palladium nanoparticles catalyst before and after reaction, which confirmed that Pd-catalyzed ortho-directed sulfonylation reaction was performed via a PdⅡ/IV catalytic cycle instead of Pd0/Ⅱ. The hot filtration test and other tests of catalysts further confirmed the hypothesis. This report afforded the most straightforward approach to confirm the variation of valence of palladium in ortho-directed sulfonylation reaction.

Cite this article

Li Pengshuai , Wu Yun , Bai Chaolumen , Bao Yongsheng . Insight into Catalytic Properties of Supported Palladium Nanoparticles Catalyzed ortho-Directed Sulfonylation[J]. Chinese Journal of Organic Chemistry, 2020 , 40(7) : 1991 -1998 . DOI: 10.6023/cjoc202003020

References

[1] (a) Huang, Z.; Lim, H. N.; Mo, F.; Young, M. C.; Dong, G. Chem. Soc. Rev. 2015, 44, 7764.
(b) Segawa, Y.; Maekawa, T.; Itami, K. Angew. Chem., Int. Ed. 2015, 54, 66.
(c) Ye, B.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308.
(d) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053.
[2] Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
[3] (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
(b) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
(c) Ricci, P.; Krämer, K.; Cambeiro, X. C.; Larrosa, I. J. Am. Chem. Soc. 2013, 135, 13258.
(d) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Chem. Rev. 2010, 110, 824.
[4] (a) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300.
(b) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330.
(c) Deprez, N. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 11234.
[5] Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302.
[6] (a) Liu, Y.-J.; Xu, H.; Kong, W.-J.; Shang, M.; Dai, H.-X.; Yu, J.-Q. Nature 2014, 515, 389.
(b) Yu, L.; Huang, Y. P.; Wei, Z.; Ding, Y. H.; Su, C. L.; Xu, Q. J. Org. Chem. 2015, 80, 8677.
[7] (a) Adak, L.; Bhadra, S.; Ranu, B. C. Tetrahedron Lett. 2010, 5, 3811.
(b) Williams, T. J.; Reay, A. J.; Whitwood, A. C.; Fairlamb, I. J. S. Chem. Commun. 2014, 50, 3052.
[8] (a) Basle, O.; Bidange, J.; Shuai, Q.; Li, C.-J. Adv. Synth. Catal. 2010, 352, 1145.
(b) Zhao, X.; Dimitrijevic, E.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 3466.
[9] (a) Trindade, A. F.; Gois, P. M. P.; Afonso, C. A. M. Chem. Rev. 2009, 109, 418.
(b) Climent, M. J.; Corma, A.; Iborra, S. Chem. Rev. 2011, 111, 1072.
(c) Li, C. L.; Sato, T.; Yamauchi, Y. Chem. Commun. 2014, 50, 11753.
[10] (a) Sun, J. W.; Fu, Y. S.; He, G. Y.; Sun, X. Q.; Wang, X. Catal. Sci. Technol. 2014, 4, 1742.
(b) Mandegani, Z.; Asadi, M.; Asadi, Z.; Mohajeri, A.; Iranpoor, N.; Omidvar, A. Green Chem. 2015, 17, 3326.
[11] (a) Coupry, D. E.; Butson, J.; Petkov, P. S.; Saunders, M.; Donnell, K. O.; Kim, H.; Buckley, C.; Addicoat, M.; Heine, T.; Szilágyi, P. Á. Chem. Commun. 2016, 52, 5175.
(b) Chen, L. Y.; Rangan, S.; Li, J.; Jianga, H. F.; Li, Y. W. Green Chem. 2014, 16, 3978.
(c) Fu, W. Q.; Feng, Y.; Fang, Z. X.; Chen, Q.; Tang, T.; Yua, Q. Y. Tang, T. D. Chem. Commun. 2016, 52, 3115.
[12] (a) Kishore, R. M.; Kantam, L.; Yadav, J.; Sudhakar, M.; Laha, S.; Venugopal, A. J. Mol. Catal. A: Chem. 2013, 379, 213.
(b) Jiao, Z. F.; Zhai, Z. Y.; Guo, X. N.; Guo, X. Y. J. Phys. Chem. C 2015, 119, 3238.
(c) Huang, J. P.; Wang, W.; Li, H. X. ACS Catal. 2013, 3, 1526.
[13] Zeng, M. F.; Du, Y. J.; Qi, C. Z.; Zuo, S. F.; Li, X. D.; Shao, L. J.; Zhang, X. M. Green Chem. 2011, 13, 350.
[14] Hu, J. Y.; Yang, Q. W.; Yang, L. F.; Zhang, Z. G.; Su, B. G.; Bao, Z. B.; Ren, Q. L.; Xing, H. B.; Dai, S. ACS Catal. 2015, 5, 6724.
[15] (a) Aziz, J.; Messaoudi, S.; Alami, M.; Hamze, A. Org. Biomol. Chem. 2014, 12, 9743.
(b) Xiao, F. H.; Chen, S. Q.; Tian, J. X.; Huang, H. W.; Liu, Y. J.; Deng, G. J. Green Chem. 2016, 18, 1538.
(c) Liang, S.; Zhang, R. Y.; Xi, L.Y.; Chen, S. Y.; Yu, X. Q. J. Org. Chem. 2013, 78, 11874.
(d) Reddy, L. R.; Hu, B.; Prashad, M.; Prasad, K. Angew. Chem., Int. Ed. 2009, 48, 172.
(e) Taniguchi, N. J. Org. Chem. 2015, 80, 1764.
[16] Xu, Y. F.; Liu, P.; Li, S. L.; Sun. P. P. J. Org. Chem. 2015, 80, 1269.
[17] Pillo, T.; Zimmermann, R.; Steiner, P.; Hüfner, S. J. Phys.: Condens. Matter 1997, 9, 3987.
[18] Zhang, D.; Zhaorigetu, B.; Bao, Y. S. J. Phys. Chem. C 2015, 119, 20426.
[19] (a) Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D. Nat. Mater. 2009, 8, 126.
(b) Qiao, Z. A.; Zhang, P. F.; Chai, S. H.; Chi, M. F.; Veith, G. M.; Gallego, N. C.; Kidder, M.; Dai, S. J. Am. Chem. Soc. 2014, 136, 11260.
[20] Some report on the extensive Pd leaching of Pd/γ-Al2O3, see:(a) Brazier, J. B.; Nguyen, B. N.; Adrio, L. A.; Barreiro, E. M.; Leong, W. P.; Newton, M. A.; Figueroa, S. J. A.; Hellgardt, K.; Hii, K. K. M. Catal. Today 2014, 229, 95.
(b) Thathagar, M. B.; ten Elshof, J. E.; Rothenberg, G. Angew. Chem., Int. Ed. 2006, 45, 2886.
[21] Wang, F.; Yu, X.; Qi, Z.; Li, X. Chem.-Eur. J. 2016, 22, 511.
[22] Niu, L.; Yang, H.; Yang, D.; Fu, H. Adv. Synth. Catal. 2012, 354, 2211.
Outlines

/