Synthesis of Indanone-Containing Heterocycles via Cycloaddition Reaction of Quinolinium Ylides with 1,3-Indanedione and 2-Arylidene-1,3-indanediones

  • Ding Bangdong ,
  • Jiang Yechao ,
  • Zhang Yu ,
  • Ye Rong ,
  • Sun Jin ,
  • Yan Chaoguo
Expand
  • a College of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou, Jiangsu 225127;
    b College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002

Received date: 2019-10-12

  Revised date: 2019-11-13

  Online published: 2020-05-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 21572196) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Abstract

The triethylamine promoted cycloaddition reaction of N-phenacylquinolinium bromide with 1,3-indanedione gave functionalized dihydropyrrolo[1,2-a]quinolines as main products and 2-(1-(2-oxo-2-phenylethyl)-quinolin-4-ylidene)-indene-1,3-diones as minor products. The similar reaction with N-benzylquinolinium bromide gave 2-(1-(2-oxo-2-phenylethyl)-quino-lin-4-ylidene)-indene-1,3-diones as major products. On the other hand, triethylamine promoted three-component reaction of N-phenacyl, N-ethoxycarbonylmethyl and N-(4-nitrobenzyl)quinolinium salts, aromatic aldehydes and 1,3-indanedione in ethanol at room temperature afforded functionalized spiro[indene-2,3'-pyrrolo[1,2-a]quinolone]s in good yields and with high diastereoselectivity.

Cite this article

Ding Bangdong , Jiang Yechao , Zhang Yu , Ye Rong , Sun Jin , Yan Chaoguo . Synthesis of Indanone-Containing Heterocycles via Cycloaddition Reaction of Quinolinium Ylides with 1,3-Indanedione and 2-Arylidene-1,3-indanediones[J]. Chinese Journal of Organic Chemistry, 2020 , 40(4) : 1003 -1016 . DOI: 10.6023/cjoc201910016

References

[1] (a) Addla, D.; Bhima; Sridhar, B.; Devi, A.; Kantevari, S. Bioorg. Med. Chem. Lett. 2012, 22, 7475.
(b) Chakrabarty, S.; Croft, M. S.; Marko, M. G.; Moyna, G. Bioorg. Med. Chem. 2013, 21, 1143/
(c) Muscia, G. C.; Buldain, G. Y.; Asis, S. E. Eur. J. Med. Chem. 2014, 73, 243.
[2] (a) Huang, H.-H.; Prabhakar, Ch.; Tang, K.-C.; Chou, P. T.; Huang, G. J.; Yang, J. S. J. Am. Chem. Soc. 2011, 133, 8028.
(b) Gomez-Esteban, S.; Benito-Hernandez, A.; Termine, R.; Hennrich, G.; Navarrete, J. T. L.; Ruiz Delgado, M. C.; Golemme, A.; Gomez-Lor, B. Chem.-Eur. J. 2018, 24, 3576.
(c) Sanguinet, L.; Williams, J. C.; Yang, Z. Y.; Twieg, R. J.; Mao, G. L.; Singer, K. D.; Wiggers, G.; Petschek, R. G. Chem. Mater. 2006, 18, 425.
[3] (a) Mondal, A.; Mukhopadhyay, C. ACS Comb. Sci. 2015, 17, 404.
(b) Mondal, A.; Banerjee, B.; Bhaumik, A.; Mukhopadhyay, C. ChemCatChem 2016, 8, 1185.
(c) Xu, H.; Chen, K.; Liu, H. W.; Wang, G. W. Org. Chem. Front. 2018, 5, 2864.
(d) Hussein, E. M.; Moussa, Z.; Ahmed, S. A. Monatsh. Chem. 2018, 149, 2021.
[4] (a) Zhou, Y. J.; Chen, D. S.; Li, Y. L.; Liu, Y.; Wang, X. S. ACS Comb. Sci. 2013, 15, 498.
(b) Chen, M.; Sun, N.; Liu, Y. H. Org. Lett. 2013, 15, 5574.
(c) Allais, C.; Lieby-Muller, F.; Rodriguez, J.; Constantieux, T. Eur. J. Org. Chem. 2013, 4131.
(d) Marquise, N.; Dorcet, V.; Chevallier, F.; Mongin, F. Org. Biomol. Chem. 2014, 12, 8138.
[5] (a) Mei, G. J.; Shi, F.; Chem. Commun. 2018, 54, 6607.
(b) Mei, G. J.; Li, D.; Zhou, G. X.; Shi, F.; Cao, Z. Chem. Commun. 2017, 53, 10030.
(c) Wu, J. L.; Du, B. X.; Zhang, Y. C.; He, Y. Y.; Wang, J. Y.; Wu, P.; Shi, F. Adv. Synth. Catal. 2016, 358, 2777.
(d) Zhu, Q. N.; Zhang, Y. C.; Xu, M. M.; Sun, X. X.; Yang, X.; Shi, F. J. Org. Chem. 2016, 81, 7898.
(e) Zhao, K.; Zhi, Y.; Shu, T.; Valkonen, A.; Rissanen, K.; Enders, D. Angew. Chem., Int. Ed. 2016, 55, 12104.
(f) Abbaraju, S.; Ramireddy, N.; Rana, N. K.; Arman, H. J.; Zhao, C. G. Adv. Synth. Catal. 2015, 357, 2633.
[6] (a) Abdukader, A.; Zhang, Y. H.; Zhang, Z. P.; Liu, C. J. Chin. J. Org. Chem. 2016, 36, 875(in Chinese). (阿布力米提·阿布都卡德尔, 张永红, 张增鹏, 刘晨江, 有机化学, 2016, 36, 875.)
(b) Tian, W. Y.; Xu, S.; Liang, Z. W.; Sun, D. L.; Zhang, R. H. Chin. J. Org. Chem. 2016, 36, 2121(in Chinese). (田文艳, 徐松, 梁中卫, 孙德立, 张荣华, 有机化学, 2016, 36, 2121.)
(c) Hao, E. J.; Jiang, X. H.; Fu, D. D.; Wang, D. C.; Xie, M. S.; Qu, G. R.; Guo, H. M. Chin. J. Org. Chem. 2016, 36, 2746(in Chinese). (郝二军, 蒋小涵, 付丹丹, 王东超, 谢明胜, 渠桂荣, 郭海明, 有机化学, 2016, 36, 2746.)
(d) Tian, K.; Meng, J.; Gan, Y. Y.; Li, X. Q.; Wu, S. Q.; Chen, J.; Li, W.; Qi, Y. Y.; Hu, W. N.; Wang, Z. C.; Ouyang G. P. Chin. J. Org. Chem. 2018, 38, 2657(in Chinese). (田坤, 孟娇, 甘宜远, 李小琴, 巫受群, 陈洁, 李文, 漆亚云, 胡伟男, 王贞超, 欧阳贵平, 有机化学, 2018, 38, 2657.)
[7] (a) Tugrak, M.; Inci Gul, H.; Sakagami, H.; Gulcin, I.; Supuran, C. T. Bioorg. Chem. 2018, 81, 433.
(b) Jangra, H.; Chen, Q.; Fuks, E.; Zenz, I.; Mayer, P.; Ofial, A. R.; Zipse, H.; Mayr, H. J. Am. Chem. Soc. 2018, 140, 16758.
(c) Chen, Y. R.; Ganapuram, M. R.; Hsieh, K. H.; Chen, K. H.; Karanam, P.; Vagh, S. S.; Liou, Y. C.; Lin, W. W. Chem. Commun. 2018, 54, 12702.
(d) Xu, H.; Sha, F.; Li, Q.; Wu, X. Y. Org. Biomol. Chem. 2018, 16, 7214.
[8] (a) Wang, X. H.; Yan, C.-G. Synthesis 2014, 46, 1059.
(b) Shi, Y. G.; Wang, X. H.; Liu, R. Z.; C. G. Yan, Chem. Commun. 2016, 52, 6280.
(c) Zhang, Y. Y.; Han, Y.; Sun, J.; Yan, C. G. ChemistrySelect 2017, 2, 7382.
(d) Cao, J.; Sun, J. Yan, C. G. Org. Biomol. Chem. 2018, 16, 4170.
(e) Sun, J.; Zhang, Y.; Shi, R. G.; Yan, C. G. Org. Biomol. Chem. 2019, 17, 3978.
(f) Liu, D.; Sun, J.; Zhang, Y.; Yan, C. G. Org. Biomol. Chem. 2019, 17, 8008.
(g) Yang, W. J.; Fang, H. L.; Sun, J. Yan, C. G. ACS Omega 2019, 4, 13553.
(h) Huang, Y.; Fang, H. L.; Huang, Y. X.; Sun, J.; Yan, C. G. J. Org. Chem. 2019, 84, 1912437.
[9] (a) Kröhnke, F.; Zecher, W. Angew. Chem., Int. Ed. 1962, 1, 626.
(b) Kröhnke, F. Angew. Chem., Int. Ed. 1963, 2, 225.
(c) Jacobs, J.; Van Hende, E.; Claessens, S.; De Kimpe, N. Curr. Org. Chem. 2011, 15, 1340.
(d) Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette, A. B. Chem. Rev. 2012, 112, 2642.
[10] (a) Constable, E. C.; Edwards, A. J.; Martínez-Máńez, R.; Raithby, P. R. J. Chem. Soc., Dalton Trans. 1995, 3253.
(b) Eryazici, I.; Moorefield, C. N.; Durmus, S.; Newkone, G. R. J. Org. Chem. 2006, 71, 1009.
(c) Tu, S. J.; Jia, R. H.; Jiang, B.; Zhang, J. Y.; Zhang, Y.; Yao, C. S.; Ji, S. J. Tetrahedron 2007, 63, 381.
[11] (a) Bora, U.; Saikia, A.; Boruah, R. C. Org. Lett. 2003, 5, 435.
(b) Sasaki, T.; Kanematsu, K.; Yukimoto, Y.; Ochiai, S. J. Org. Chem. 1971, 36, 813.
(c) Xia, Z. Q.; Przewloka, T.; Koya, K.; Ono, M.; Chen, S. J.; Sun, L. J. Tetrahedron Lett. 2006, 47, 8817.
[12] (a) Dinica, R. M.; Druta, I. I.; Pettinari, C. Synlett 2000, 1013.
(b) Furdui, B.; Dinica, R.; Druta, I. I.; Demeunynck, M. Synthesis 2006, 2640.
[13] (a) Zhang, X. C.; Huang, W. Y. Synthesis 1999, 1, 51.
(b) Wu, K.; Chen, Q. Y. Synthesis 2003, 35.
(c) Chuang, C. P.; Tsai, A. I. Synthesis 2006, 675.
[14] (a) Ruano, J. L. G.; Fraile, A.; Martín, M. R.; González, G.; Fajardo, C.; Martín-Castro, A. M. J. Org. Chem. 2011, 76, 3296.
(b) Khlebnikov, A. F.; Golovkina, M. V.; Novikov, M. S.; Yufit, D. S. Org. Lett. 2012, 14, 3768.
(c) Brioche, J.; Meyer, C.; Cossy, J. Org. Lett. 2015, 17, 2800.
[15] (a) Liu, Y.; Sun, J. W. J. Org. Chem. 2012, 77, 1191.
(b) Osyanin, V. A.; Osipov, D. V.; Klimochkin, Y. N. J. Org. Chem. 2013, 78, 5505.
(c) Wang, F. Y.; Shen, Y. M.; Hu, H. Y.; Wang, X. S.; Wu, H.; Liu, Y. J. Org. Chem. 2014, 79, 9556.
[16] (a) Allgäuer, D. S.; Mayer, P.; Mayr, H. J. Am. Chem. Soc. 2013, 135, 15216.
(b) Allgäuer, D. S.; Mayr, H. Eur. J. Org. Chem. 2013, 6379.
(c) Allgäuer, D. S.; Mayr, H. Eur. J. Org. Chem. 2014, 2956.
(d) Hopf, H.; Jones, P. G.; Nicolescu, A.; Bicu, E.; Birsa, L. M.; Belei, D. Chem.-Eur. J. 2014, 20, 5565.
[17] (a) Yan, C. G.; Cai, X. M.; Wang, Q. F.; Wang, T. Y.; Zheng, M. Org. Biomol. Chem. 2007, 5, 945.
(b) Yan, C. G.; Song, X. K.; Wang, Q. F.; Sun, J. Siemeling, U.; Bruhn, C. Chem. Commun. 2008, 1440.
(c) Wang, Q. F.; Song, X. K.; Chen, J.; Yan, C. G. J. Comb. Chem. 2009, 11, 1007.
(d) Wang, Q. F.; Hou, H.; Hui, L.; Yan, C. G. J. Org. Chem. 2009, 74, 7403.
(e) Yan, C. G.; Wang, Q. F.; Song, X. K.; Sun, J. J. Org. Chem. 2009, 74, 710.
(f) Wang, Q. F.; Hui, L.; Hou, H.; Yan, C. G. J. Comb. Chem. 2010, 12, 260.
(g) Han, Y.; Chen, J.; Hui, L.; Yan, C. G. Tetrahedron 2010, 66, 7743.
[18] (a) Hou, H.; Zhang, Y.; Yan, C. G. Chem. Commun. 2012, 48, 4492.
(b) Hui, L.; Li, H. Y.; Yan, C. G. Eur. J. Org. Chem. 2012, 3157.
(c) Wu, L.; Sun, J.; Yan. C. G. Org. Biomol. Chem. 2012, 10, 9452.
(d) Shen, G. L.; Sun, J.; Yan, C. G. Org. Biomol. Chem., 2015, 13, 10929.
(e) Shen, G. L.; Sun, J.; Yan, C. G. RSC Adv. 2015, 5, 4475.
(f) Liu, L. Z.; Wang, X. Y.; Sun, J.; Yan, C. G. Tetrahedron Lett. 2015, 56, 6711.
[19] (a) Banothu, J.; Basavoju, S.; Bavantula, R. J. Heterocycl. Chem. 2015, 52, 853.
(b) Majumder, S.; Sharma, M.; Bhuyan, P. J. Tetrahedron Lett. 2013, 54, 6868.
[20] (a) Shen, G. L.; Sun, J.; Yan, C. G. Chin. J. Chem. 2016, 34, 412.
(b) Liu, R. Z.; Shi, R. G.; Sun, J.; Yan, C. G. Org. Chem. Front. 2017, 4, 354.
(c) Shi, R. G.; Sun, J.; Yan, C. G. ACS Omega 2017, 2, 7820.
[21] (a) Fujita, R.; Hoshino, M.; Tojyo, Y.; Kimura, A.; Hongo, H. Yakugaku Zasshi 2006, 126, 99.
(b) Fujita, R.; Watanabe, N.; Tomisawa, H. Heterocycles 2001, 55, 435.
(c) Fujita, R.; Hoshino, M.; Tomisawa, H. Chem. Pharm. Bull. 2006, 54, 334.
Outlines

/