Synthesis and Biological Activity of Natural Stilbene-Inspired Substituted Styrylthiazole Derivatives

  • Zhang Junhui ,
  • Zhu Yabo ,
  • Weng Jianquan ,
  • Yu Qian ,
  • Yuan Jing ,
  • Chen Jie
Expand
  • a College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032;
    b Clinical Pharmacy(School of Integrative Pharmacy, Institute of Integrative Pharmaceutical Research), Guangdong Pharmaceutical University, Guangzhou 510006;
    c Collaborative Innovation Center of Green Pesticide, Zhejiang A&F University, Hangzhou 311300

Received date: 2019-10-18

  Revised date: 2019-11-13

  Online published: 2020-05-06

Supported by

Project supported by the Natural Science Foundation of Zhejiang Province (No. LY17C140003).

Abstract

In order to find novel drug leads, a series of natural stilbene-inspired substituted styrylthiazole derivatives were designed and synthesized by hybridization of the structures of both bioactive 2,6-difluorophenylthiazole moiety and stilbene. The structures of the title compounds were confirmed by 1H NMR, 13C NMR and ESI-HRMS. The in vitro antifungal bioassay results indicated that some compounds showed moderate inhibition activity against FusaHum graminearum, Helminthosporium maydis and Mycosphaerella melonis at 100 μg/mL, and the inhibition rate of (E)-5-bromo-4-(2,6-difluorophenyl)-2-(4-tri-fluoromethylstyryl)thiazole (6p) against FusaHum graminearum reached 86.7%. These compounds were also screened for their topoisomerase I inhibitory activity using Top1-mediated relaxation assay. The results showed that all of them exhibited certain Top1 inhibitory activity at 50 μmol·L-1, and amongst them (E)-5-bromo-4-(2,6-difluorophenyl)-2-(2-chlorosty-ryl)thiazole (6k) displayed promising Top1 inhibitory activity, which still remained certain activity at 0.2 μmol·L-1.

Cite this article

Zhang Junhui , Zhu Yabo , Weng Jianquan , Yu Qian , Yuan Jing , Chen Jie . Synthesis and Biological Activity of Natural Stilbene-Inspired Substituted Styrylthiazole Derivatives[J]. Chinese Journal of Organic Chemistry, 2020 , 40(4) : 1055 -1061 . DOI: 10.6023/cjoc201910023

References

[1] Crouse, G. D. CHEMTECH 1998, 28, 36.
[2] Rimando, A. M.; Cuendet, M.; Desmarchelier, C.; Mehta, R. G.; Pezzuto, J. M.; Duke, S. O. J. Agric. Food Chem. 2002, 50, 3453.
[3] Stivala, L. A.; Savio, M.; Carafoli, F.; Perucca, P.; Bianchi, L.; Maga, G.; Forti, L.; Pagnoni, U. M.; Albini, A.; Prosperi, E.; Vannini, V. J. Biol. Chem. 2001, 276, 22586.
[4] Kimura, Y.; Okuda, H.; Arichi, S. Biochim. Biophys. Acta 1985, 834, 275.
[5] Mannila, E.; Talvitie, A.; Kolehmainen, E. Phytochemistry 1993, 33, 813.
[6] Chung, M.-I.; Teng, C.-M.; Cheng, K.-L.; Ko, F.-N.; Lin, C.-N. Planta Med. 1992, 58, 274.
[7] Inamori, Y.; Kubo, M.; Tsujibo, H.; Ogawa, M.; Saito, Y.; Miki, Y.; Takemura, S. Chem. Pharm. Bull. (Tokyo) 1987, 35, 887.
[8] Kronenwerth, M.; Dauth, C.; Kaiser, M.; Pemberton, I.; Bode, H. B. Eur. J. Org. Chem. 2014, 36, 8026.
[9] Shi, D.; An, R.; Zhang, W.-B.; Zhang, G.-L.; Yu, Z.-G. J. Agric. Food Chem. 2017, 65, 60.
[10] Hu, K.-J.; Li, J.-X.; Webster, J. M. Nematology 1999, 1, 457.
[11] Mizuno, C. S.; Schrader, K. K.; Rimando, A. M. J. Agric. Food Chem. 2008, 56, 9140.
[12] Weng, J.-Q.; Ali, A.; Estep, A.; Becnel, J.; Meyer, S. L. F.; Wedge, D. E.; Jacob, M.; Rimando, A. M. Chem. Biodiversity 2016, 13, 1165.
[13] Yan, J.; Guo, Y.-Y.; Wang, Y.-L.; Mao, F.; Huang, L.; Li, X.-S. Eur. J. Med. Chem. 2015, 95, 220.
[14] Sang, K. L.; Park, E. J.; Lee, E. J.; Min, H. Y.; Kim, E. Y.; Lee, T. H.; Kim, S. H. Bioorg. Med. Chem. Lett. 2004, 14, 2105.
[15] Mabkhot, Y. N.; Alharbi, M. M.; Al-Showiman, S. S.; Ghabbour, H. A.; Kheder, N. A.; Soliman, S. M.; Frey, W. Chem. Cent. J. 2018, 12, 56.
[16] Pember, S. O.; Mejia, G. L.; Price, T. J.; Pasteris, R. J. Bioorg. Med. Chem. Lett. 2016, 26, 2965.
[17] Kouatly, O.; Geronikaki, A.; Kamoutsis, C.; Hadjipavlou-Litina, D.; Eleftheriou, P. Eur. J. Med. Chem. 2009, 44, 1198.
[18] Ruan, L.-L.; Fan, R.-J.; Liu, X.-H.; Chen, J.; Weng, J.-Q. Chin. J. Org. Chem. 2015, 35, 1166(in Chinese). (阮铃莉, 范人杰, 刘幸海, 陈杰, 翁建全, 有机化学, 2015, 35, 1166.)
[19] Yu, H.-B.; Qin, Z.-F.; Dai, H.; Zhang, X.; Qin, X.; Wang, T.-T.; Fang, J.-X. J. Agric. Food Chem. 2018, 56, 11356.
[20] Wang, H.-L.; Ruan, L.-L.; Chen, Y.; Liu, X.-H.; Weng, J.-Q. Chin. J. Org. Chem. 2014, 34, 419(in Chinese). (王海林, 阮铃莉, 陈勇, 刘幸海, 翁建全, 有机化学, 2014, 34, 419.)
[21] Yasushi, S.; Renpei, H.; Takao I.; Daisuke, H. WO 2004035554, 2004[Chem. Abstr. 2004, 140, 357330].
[22] Yang, P.; Weng, J.-Q.; Tan, C.-X.; Wang, X.-L. Chin. J. Org. Chem. 2009, 29, 2000(in Chinese). (杨鹏, 翁建全, 谭成侠, 王秀莲, 有机化学, 2009, 29, 2000.)
[23] Wang, Z.-Y.; Xu, H.-J.; Zhao, J.-P.; Liu, X.-H.; Weng, J.-Q. Chin. J. Org. Chem. 2018, 38, 3112(in Chinese). (汪洲洋, 徐涵靖, 赵建平, 刘幸海, 翁建全, 有机化学, 2018, 38, 3112.)
[24] Li, Q.-M.; Pang, K.-S.; Zhao, J.-P.; Liu, X.-H.; Weng, J.-Q. Chin. J. Org. Chem. 2017, 37, 1009(in Chinese). (李倩梅, 庞凯胜, 赵建平, 刘幸海, 翁建全, 有机化学, 2017, 37, 1009.)
[25] Weng, J.-Q.; Tan, C.-X.; Liu, X.-H. J. Pestic. Sci. 2012, 37, 164.
[26] Weng, J.-Q.; Liu, X.-H.; Huang, H.; Tan, C.-X.; Chen, J. Molecules 2012, 17, 989.
[27] Dou, D.-F.; He, G.-J.; Li, Y.; Lai, Z.; Wei, L.-Q.; Alliston, K. R.; Lushington, G. H.; Eichhorn, D. M.; Groutas, W. C. Bioorg. Med. Chem. 2010, 18, 1093.
[28] Lu, Q.; Yu, Q.; Zhu, Y.-B.; Weng, J.-Q.; Yuan, J.; Hu, D.-X.; Chen, J.; Liu, X.-H.; Tan, C.-X. J. Mol. Struct. 2019, 1180, 780.
[29] Xu, M.; Zhu, Y.-B.; Wang, M.; Khan I. A.; Liu, X.-H.; Weng, J.-Q. Lett. Drug Des. Discovery 2018, 15, 347.
Outlines

/