Generation and Application of Iminyl Radicals from Oxime Derivatives Enabled by Visible Light Photoredox Catalysis

  • Song Changhua ,
  • Shen Xu ,
  • Yu Fang ,
  • He Yupeng ,
  • Yu Shouyun
Expand
  • a College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001;
    b State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023

Received date: 2020-04-06

  Revised date: 2020-04-29

  Online published: 2020-05-08

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21732003, 21978124) and the Innovative Talent Project of Educational Department of Liaoning Province (No. LR2018019).

Abstract

The advent of visible light photoredox catalysis has transformed the way of single-electron transfer (SET) processes and accessing radical species. As a result, the chemistry of nitrogen-centered radicals has witnessed a remarkable gain in interest. Specifically, under visible light photoredox catalysis, iminyl radicals can be generated from oxime derivatives, such as O-acyl oximes, O-aryl oximes and α-imino-oxy acids. Meanwhile, the reactivity of iminyl radcials is investigated systematically. Iminyl radicals can undergo four major classes of reactions, namely addition to arenes, intramolecular hydrogen atom transfer and subsequent reactions, addition to alkenes, Norrish type-I fragmentation (cleavage of α-carbon-carbon bonds) and subsequent reactions. In this review, the most significant progresses in the use of oximes and their derivatives as iminyl precursors are discussed and their engagement in photoredox-mediated transformations is outlined.

Cite this article

Song Changhua , Shen Xu , Yu Fang , He Yupeng , Yu Shouyun . Generation and Application of Iminyl Radicals from Oxime Derivatives Enabled by Visible Light Photoredox Catalysis[J]. Chinese Journal of Organic Chemistry, 2020 , 40(11) : 3748 -3759 . DOI: 10.6023/cjoc202004008

References

[1] Lawrence, S. A. Amines:Synthesis Properties and Applications, Cambridge University, Cambridge, 2005, p. 1016.
[2] Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.
[3] (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(b) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
(c) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
(d) Chen, Y.; Lu, L.-Q; Yu, D.-G; Zhu, C.-J; Xiao, W.-J. Sci. China Chem. 2019, 62, 24.
(e) Chen, F.; Chen, H.; Wu, Q.-A.; Luo, S.-P. Chin. J. Org. Chem. 2020, 40, 339(in Chinese). (陈锋, 陈浩, 吴庆安, 罗书平, 有机化学, 2020, 40, 339.)
[4] (a) Davies, J.; Morcillo, S. P.; Douglas, J. J.; Leonori, D. Chem. Eur. J. 2018, 24, 12154.
(b) Kärkäs, M. D. ACS Catal. 2017, 7, 4999.
(c) An, X.-D.; Yu, S. Tetrahedron Lett. 2018, 59, 1605.
(d) Jackman, M. M.; Cai, Y.; Castle, S. L. Synthesis 2017, 49, 1785.
(e) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2016, 45, 2044.
(f) Xiao, L; Li, J.-H; Wang, T. Acta Chim. Sinica 2019, 77, 841(in Chinese). (肖丽, 李嘉恒, 王挺, 化学学报, 2019, 77, 841.)
(g) Xu, X.-L.; Wan, X.; Geng, Y.; Zhang, J.-S.; Xu, H.-J. Chin. J. Org. Chem. 2011, 31, 453(in Chinese). (徐小岚, 万薪, 耿烨, 张家松, 许华建, 有机化学, 2011, 31, 453).
(h) Xiong, T.; Zhang, Q. Chem. Soc. Rev. 2016, 45, 3069.
(i) Song, H.; Liu, X.-Y.; Qin, Y. Acta Chim. Sinica 2017, 75, 1137(in Chinese). (宋颢, 刘小宇, 秦勇, 化学学报, 2017, 75, 1137.)
(j) Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Xiao, W.-J.; Chen, J.-R. Acc. Chem. Res. 2020, Acc. Chem. Res. 2020, 53, 1066.
[5] Walton, J. C. Acc. Chem. Res. 2014, 47, 1406.
[6] Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds, CRC, Boca Raton, 2003, p. 392.
[7] Jiang, H.; An, X. D.; Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Angew. Chem., Int. Ed. 2015, 54, 4055.
[8] An, X.-D.; Yu, S. Org. Lett. 2015, 17, 2692.
[9] Sun, J.-J; He, Y.-Y; An, X.-D; Zhang, X; Yu, L; Yu, S. Org. Chem. Front. 2018, 5, 977.
[10] Liu, X.-B.; Qing, Z.-X.; Zheng, X.-Y.; Zeng, J.-G.; Cheng, P.; Xie, H.-Q. Molecules 2016, 21, 1690.
[11] Matsushita, Y.; Ochi, R. Tanaka, Y.; Koike, T.; Akita, M. Org. Chem. Front. 2020, 7, 1243.
[12] (a) Qin, Q.-X; Yu, S. Org. Lett. 2015, 17, 1894.
(b) Shen, X.; Zhao, J.-J.; Yu, S. Org. Lett. 2018, 20, 5523.
[13] Shu, W.; Nevado, C. Angew. Chem., Int. Ed. 2017, 56, 1881.
[14] Ma, Z.-Y.; Guo, L.-N.; Gu, Y.-R.; Chen, L.; Duan, X.-H. Adv. Synth. Catal. 2018, 360, 4341.
[15] Chen, L; Guo, L.-N.; Ma, Z.-Y.; Gu, Y.-R.; Zhang, J.; Duan, X.-H. J. Org. Chem. 2019, 84, 6475.
[16] Dauncey, E. M.; Morcillo, S. P.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 744.
[17] Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 1692.
[18] Li, J.-J.; Zhang, P.-P.; Jiang, M.; Yang, H.-J.; Zhao, Y.-F.; Fu, H. Org. Lett. 2017, 19, 1994.
[19] Li, Y.-W.; Mao, R.-Y.; Wu, J. Org. Lett. 2017, 19, 4472.
[20] Tadic-Biadatti, M.-H. L.; Callier-Dublanchet, A.; Horner, J. H.; Quiclet-Sire, B.; Zard, S. Z.; Newcomb, M. J. Org. Chem. 1997, 62, 559.
[21] Boivin, J; Schiano, A.-M; Zard, S. Z; Zhang, H.-W. Tetrahedron Lett. 1999, 40, 4531.
[22] Mikami, T.; Narasaka, K. Chem. Lett. 1999, 24, 338.
[23] Davies, J.; Booth, S. G.; Essafi, S.; Dryfe, Robert A. W.; Leonori, D. Angew. Chem., Int. Ed. 2015, 54, 14017.
[24] Cai, S.-H.; Xie, J.-H; Song, S.-J.; Ye, L.; Feng, C.; Loh, T. P. ACS Catal. 2016, 6, 5571.
[25] Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2017, 56, 12273.
[26] Davies, J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2017, 56, 13361.
[27] (a) Yin, W.; Wang, X. New J. Chem. 2019, 43, 3254.
(b) Xiao, T.-B.; Huang, H.-T.; Anand, D.; Zhou, L. Synthesis 2020, Synthesis 2020, 52, 1585.
[28] Boivin, J.; Fouquet, E.; Zard, S. Z. Tetrahedron 1994, 50, 1757.
[29] Yu, X.-Y.; Chen, J.-R.; Wang, P.-Z.; Yang, M.-N.; Liang, D.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 738.
[30] He, B.-Q.; Yu, X.-Y.; Wang, P.-Z.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2018, 54, 12262.
[31] Wang, P.-Z.; Yu, X.-Y.; Li, C.-Y.; He, B.-Q.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2018, 54, 9925.
[32] Li, L.; Chen, H.; Mei, M.; Zhou, L. Chem. Commun. 2017, 53, 11544.
[33] Vaillant, F. L.; Garreau, M.; Nicolai, S.; Grynova, G.; Corminboeuf, C.; Waster, J. Chem. Sci. 2018, 9, 5883.
[34] Zhang, J.; Li, X.-F.; Xie, W.-L.; Ye, S.-Q.; Wu, J. Org. Lett. 2019, 21, 4950.
[35] Zheng, M.; Li, G.-L.; Lu, H.-J. Org. Lett. 2019, 21, 1216.
[36] Liu, Y.; Wang, Q.-L.; Chen, Z.; Li, H.; Xiong, B.-Q.; Zhang, P.-L.; Tang, K.-W. Chem. Commun. 2020, 56, 3011.
[37] Jian, Y.; Chen, M.; Yang, Chao; Xia, W.-J. Eur. J. Org. Chem. 2020, 1439.
[38] Wang, P.-Z.; He, B.-Q.; Cheng, Y.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2019, 21, 6924.
[39] Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 15505.
[40] Chen, J.; He, B-Q.; Wang, P.-Z.; Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2019, 21, 4359.
[41] Lu, B.; Cheng, Y.; Chen, L.-Y.; Chen, J. R.; Xiao, W.-J. ACS Catal. 2019, 9, 8159.
[42] Yu, X.-Y.; Chen, J.; Chen, H.-W.; Xiao, W.-J.; Chen, J.-R. Org. Lett. 2020, 22, 2333.
[43] Dauncey, E. M.; Dighe, S. U.; Douglas, J. J.; Leonori, D. Chem. Sci. 2019, 10, 7728.
[44] Chen, J.; Wang, P.-Z.; Lu, B.; Liang, D.; Yu, X.-Y.; Xiao, W.-J.; Chen, J. R. Org. Lett. 2019, 21, 9763.
[45] Wang, T.; Wang; Y.-N.; Wang, R.; Zhang, B.-C.; Yang, C.; Li, Y.-L.; Wang, X.-S. Nat. Commun. 2019, 10, 5373.
[46] (a) Li, Y.-H.; Wang, C.-H.; Gao, S.-Q.; Qi, F.-M.; Yang, S.-D. Chem. Commun. 2019, 55, 11888.
(b) Li, C.; Qi, Z.-C.; Yang, Q.; Qiang, X.-Y.; Yang, A.-D. Chin. J. Chem. 2018, 36, 1052.
[47] (a) Cheng, Y.-Y.; Lei, T.; Su, L.-L.; Fan, X.-W.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2019, 21, 8789.
(b) Fan, X.-W.; Lei, T.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2019, 21, 4153.
(c) Fan, X.-W.; Lei, T.; Liu, Z.; Yang, X.-L.; Cheng, Y.-Y.; Liang, G.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Eur. J. Org. Chem. 2020, 10, 1551.
[48] Qin, Q.; Han, Y.-Y; Jiao, Y.-Y; He, Y.; Yu, S. Org. Lett. 2017, 19, 2909.
Outlines

/