Progress in Synthesis of N-Sulfonyl-1,2,3-triazole and Its Application in Organic Synthesis

  • Zhang Wensheng ,
  • Xu Wenjing ,
  • Zhang Fei ,
  • Ma Chunyu ,
  • Ma Keyou ,
  • Li Yan
Expand
  • a Department of Metallurgy and Chemical Engineering, Jiyuan Vocational and Technical College, Jiyuan, Henan 459000;
    b Institute of Synthetic Technology, Jiaozuo Teachers College, Jiaozuo, Henan 454100;
    c Jiaozuo Vocational and Technological School, Jiaozuo, Henan 454100

Received date: 2020-02-10

  Revised date: 2020-04-16

  Online published: 2020-05-11

Supported by

Project supported by the Key Natural Science Research Program of Henan Education Department (No. 20B150014) and the Key Scientific Research Projects of Jiyuan Vocational and Technical College (No. JZXY-2020-58).

Abstract

N-Sulfonyl-1,2,3-triazole, an important class of five-membered nitrogen-containing organic compounds, has been found processing widespread application in the synthesis of various nitrogen-containing organic compounds, especially heterocyclic or amino-substituted aromatic rings. The synthetic methods of N-sulfonyl-1,2,3-triazole are introduced. Besides, the progress on constructions of various organic compounds via ring-opening reaction of N-sulfonyl-1,2,3-triazoles as precursor of α-diazoimine and Rh-carbene imine intermediates in the past two years is reviewed.

Cite this article

Zhang Wensheng , Xu Wenjing , Zhang Fei , Ma Chunyu , Ma Keyou , Li Yan . Progress in Synthesis of N-Sulfonyl-1,2,3-triazole and Its Application in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2020 , 40(8) : 2338 -2352 . DOI: 10.6023/cjoc202002010

References

[1] (a) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 14972.
(b) Chattopadhyay, B.; Gevorgyan, V. Angew. Chem., Int. Ed. 2012, 51, 862.
(c) Gulevich, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2013, 52, 1371.
(d) Davies, H. M. L.; Alford, J. S. Chem. Soc. Rev. 2014, 43, 5151.
(e) Wang, Y.; Lei, X.; Tang, Y. Synlett 2015, 26, 2051.
(f) Anbarasan, P.; Yadagiri, D.; Rajasekar, S. Synthesis 2014, 46, 3004.
(g) Hockey, S. C.; Henderson, L. C. Aust. J. Chem. 2015, 68, 1796.
(h) Jiang, Y.; Sun, R.; Tang, X.-Y.; Shi, M. Chem.-Eur. J. 2016, 22, 17910.
(i) Volkova, Y. A.; Gorbatov, S. A. Chem. Heterocycl. Compd. 2016, 52, 216.
(j) Li, Y.; Yang, H.-J.; Zhai, H.-B. Chem.-Eur. J. 2018, 24, 12757.
[2] (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.
(b) Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G. J. Am. Chem. Soc. 2003, 125, 3192.
[3] (a) Bae, I.; Han, H.; Chang, S. J. Am. Chem. Soc. 2005, 127, 2038.
(b) Zhang, W.-S.; Xu, W.-J.; Kuang, C.-X. Chin. J. Org. Chem. 2015, 35, 2059(in Chinese). (张文生, 许文静, 匡春香, 有机化学, 2015, 35, 2059.)
[4] Yoo, E. J.; Ahlquist, M.; Kim, S. H.; Bae, I.; Fokin, V. V.; Sharpless, K. B.; Chang, S. Angew. Chem., Int. Ed. 2007, 46, 1730.
[5] Wang, F.; Fu, H.; Jiang, Y.-Y.; Zhao, Y.-F. Adv. Synth. Catal. 2008, 350, 1830.
[6] Raushel, J.; Fokin, V. V. Org. Lett. 2010, 12, 4952.
[7] Liu, Y.-T.; Wang, X.-Y.; Xu, J.-M.; Zhang, Q.; Zhao, Y.; Hu, Y.-F. Tetrahedron 2011, 67, 6294.
[8] Zhang, W.-S.; Xu, W.-J. Chem. Heterocycl. Compd. 2016, 52, 192.
[9] Zhang, W.-S.; Xu, W.-J.; Zhang, F. Heterocycl. Commun. 2016, 22, 165.
[10] Rajasekar, S.; Anbarasan, P. Chem.-Asian J. 2019, 14, 4563.
[11] Garlets Z. J.; Davies, H. M. L. Org. Lett. 2018, 20, 2168.
[12] Kubiak, II, R. W.; Davies, H. M. L. Org. Lett. 2018, 20, 3771.
[13] Tian, M.-M.; Liu, B.-X.; Sun, J.-A.; Li, X.-W. Org. Lett. 2018, 20, 4946.
[14] Kahar, N. M.; Nabar, K. U.; Jadhav, P. P.; Dawande, S. G. Asian J. Org. Chem. 2019, 8, 79.
[15] (a) Rajasekar, S.; Anbarasan, P. Org. Lett. 2019, 21, 3067.
(b) Rajasekar, S.; Anbarasan, P. J. Org. Chem. 2019, 84, 7747.
[16] Mi, P.-B.; Wang, H.-N.; Zhao, R.; Song, J.-N. Eur. J. Org. Chem. 2018, 6, 759.
[17] Jia, R.-M.; Meng, J.; Leng, J.-Y.; Yu, X.-X.; Deng, W.-P. Chem.-Asian J. 2018, 13, 2360.
[18] Pal, K.; Hoque, A.; Volla, C. M. R. Chem.-Eur. J. 2018, 24, 2558
[19] Pal, K.; Sontakke, G. S.; Volla, C. M. R. Org. Lett. 2019, 21, 3716.
[20] Chen, Y.-H.; Dong, S.-X.; Xu, X.; Liu, X.-H.; Feng, X.-M. Angew. Chem., Int. Ed. 2018, 57, 16554.
[21] Alcaide, B.; Almendros, P.; Fernández, I.; Martínez del Campo, T.; Palop, G.; Toledano-Pinedo, M.; Delgado-Martίnez, P. Adv. Synth. Catal. 2019, 361, 1160.
[22] Kaladevi, S.; Kamalraj, M.; Altia, M.; Rajasekar, S.; Anbarasan, P. Chem. Commun. 2019, 55, 4507.
[23] Xing, S.-Y.; Xia, H.-Y.; Wang, X.; Wu, D.; Xu, X.-R.; Wang, Y.-R.; Su, K.; Zhu, B.-L.; Guo, J.-S. Org. Chem. Front. 2019, 6, 3121.
[24] Liu, Y.; Xie, P.; Li, J.-G.; Bai, W.-J.; Jiang, J. Org. Lett. 2019, 21, 4944.
[25] Liu, S.-Y.; Yao, W.-F.; Liu, Y.; Wei, Q.-H.; Chen, J.-H.; Wu, X.; Xia, F.; Hu, W.-H. Sci. Adv. 2017, 3, e1602467.
[26] Ma, X.-J.; Xie, X.-M.; Liu, L.; Xia, R.; Li, T.-Y.; Wang, H.-X. Chem. Commun. 2018, 54, 1595.
[27] Yu, S.-S.; An, Y.-H.; Wang, W.-L.; Xu, Z.-F.; Li, C.-Y. Adv. Synth. Catal. 2018, 360, 2125.
[28] Yadagiri, D.; Chaitanya, M.; Reddy, A. C. S.; Anbarasan, P. Org. Lett. 2018, 20, 3762.
[29] Liu, Z.; Du, Q.-C.; Zhai, H.-B.; Li, Y. Org. Lett. 2018, 20, 7514.
[30] Ma, X.-J.; Liu, L.; Wang, J.-Y.; Xi, X.-L.; Xie, X.-M.; Wang, H.-X. J. Org. Chem. 2018, 83, 14518.
[31] Xu, Z.-F.; Shan, L.-H.; Zhang, W.; Cen, M.-J.; Li, C.-Y. Org. Chem. Front. 2019, 6, 1391.
[32] Zhu, C.-Z.; Wei, Y.; Shi, M. Adv. Synth. Catal. 2019, 361, 3430.
[33] Xu, Z.-F.; An, Y.-H.; Chen, Y.-D.; Duan, S.-G. Tetrahedron Lett. 2019, 60, 1849.
[34] Makarov, A. S.; Uchuskin, M. G.; Hashmi, A. S. K. Chem. Sci. 2019, 10, 8583.
[35] Bosmani, A.; Guarnieri-Ibáñez, A.; Goudedranche, S.; Besnard, C.; Lacour, J. Angew. Chem., Int. Ed. 2018, 57, 7151.
[36] Strelnikova, J. O.; Rostovskii, N. V.; Starova, G. L.; Khlebnikov, A. F.; Novikov, M. S. J. Org. Chem. 2018, 83, 11232.
[37] Khaidarov, A. R.; Rostovskii, N. V.; Zolotarev, A. A.; Khlebnikov, A. F.; Novikov, M. S. J. Org. Chem. 2019, 84, 3743.
[38] Khaidarov, A. R.; Rostovskii, N. V.; Starova1, G. L.; Khlebnikov, A. F.; Novikov, M. S. Chem. Heterocycl. Compd. 2018, 54, 946.
[39] Furukawa, A.; Hata, T.; Shigeta, M.; Urabe, H. Tetrahedron Lett. 2019, 60, 815.
[40] Ge, J.-M.; Wu, X.-L.; Bao, X.-G. Chem. Commun. 2019, 55, 6090.
[41] (a) Zhao, Q.; Miura, T.; Murakami, M. Chem. Lett. 2019, 48, 510.
(b) Miura, T.; Zhao, Q.; Murakami, M. Angew. Chem., Int. Ed. 2017, 56, 16645.
[42] Zhu, C.-Z.; Wei, Y.; Shi, M. Org. Chem. Front. 2019, 6, 2884.
[43] Sontakke, G. S.; Pal, K.; Volla, C. M. R. J. Org. Chem. 2019, 84, 12198.
[44] Li, Z.; Wei, Q.-H.; Song, L.-L.; Han, W. Y. J.; Wu, X.; Zhao, Y.; Xia, F.; Liu, S. Y. Org. Lett. 2019, 21, 6413.
[45] Jiang, Y.; Wang, Q.; Sun, R.; Tang, X.-Y.; Shi, M. Org. Chem. Front. 2016, 3, 744.
[46] Li, L.-H.; Jiang, Y.; Hao, J.; Wei, Y.; Shi, M. Adv. Synth. Catal. 2017, 359, 3304.
[47] Xu, Z.-F.; Dai, H.-C.; Shan, L.-H.; Li, C.-Y. Org. Lett. 2018, 20, 1054.
[48] Yang, D.-D.; Shan, L.-H.; Xu, Z.-F.; Li, C.-Y. Org. Biomol. Chem. 2018, 16, 1461.
[49] Wilkerson-Hill, S. M.; Haines, B. E.; Musaev, D. G.; Davies, H. M. L. J. Org. Chem. 2018, 83, 7939.
Outlines

/