Chiral Resolution of Biphenol and Asymmetric Alkylation under Phase Transfer Catalysis

  • Ke Cuilian ,
  • Xu Weiping ,
  • Liu Da ,
  • Liu Yan ,
  • Maruoka Keiji
Expand
  • a School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China;
    b Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan

Received date: 2020-03-11

  Revised date: 2020-04-28

  Online published: 2020-05-11

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21977019, 21502023), the Guangdong Provincial Key Research and Development Program (No. 2019B020201005), the Open Project of Guangdong Provincial Key Laboratory of New Drug Screening (No. GDKLNDS-2018OF004).

Abstract

Chiral phase transfer catalysts play extrememly important role in the construction of natural products, the core structures of chiral drugs, and functional chiral chemicals, therefore have attracted more and more attention in recent years. In this paper, the chiral resolution of biphenyl skeletons was achieved by utilizing the readily available (R)-α-methoxy benzene acetic acid as resolution agent. A series of new biphenyl type of phase transfer catalysts were designed and synthesized based on the optically pure C2-symmetric chiral biphenyl framework. These catalysts are readily applicable to asymmetric alkylation of N-(diphenylmethylene)glycine tert-butyl ester with excellent enantioselectivity (up to 96%) and yield (up to 97%). The structure-activity relationship study on these catalysts showed that the methylation of hydroxyl group at C2 and C2' position is favorable for the selectivity, introduction of tert-butyl group at C3 and C3' position is unfavorable to both selectivity and reactivity. The catalysts bearing 3,4,5-trifluorophenyl group or 3,5-bis(trifluoromethyl)phenyl group at C5 and C5' position showed good reactivity and selectivity.

Cite this article

Ke Cuilian , Xu Weiping , Liu Da , Liu Yan , Maruoka Keiji . Chiral Resolution of Biphenol and Asymmetric Alkylation under Phase Transfer Catalysis[J]. Chinese Journal of Organic Chemistry, 2020 , 40(7) : 1955 -1966 . DOI: 10.6023/cjoc202003028

References

[1] Odonnell, M. J.; Bennett, W. D.; Wu, S. D. J. Am. Chem. Soc. 1989, 111, 2353.
[2] Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc. 1997, 119, 12414.
[3] Lygo, B.; Wainwright, P. G. Tetrahedron Lett. 1997, 38, 8595.
[4] Jew, S. S.; Jeong, B. S.; Yoo, M. S.; Huh, H.; Park, H. G. Chem. Commun. 2001, 1244.
[5] Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. Org. Lett. 2001, 3, 3329.
[6] Kita, T.; Georgieva, A.; Hashimoto, Y.; Nakata, T.; Nagasawa, K. Angew. Chem., Int. Ed. 2002, 41, 2832.
[7] Liu, X.; Dong, S.; Lin, L.; Feng, X. Chin. J. Chem. 2018, 36, 791.
[8] Wang, P.-S.; Chen, D.-F.; Gong, L.-Z. Top. Curr. Chem. 2019, 378, 9.
[9] Tang, Q.; Fu, K.; Ruan, P.; Dong, S.; Su, Z.; Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2019, 58, 11846.
[10] You, S.; Cheng, Y.-Z.; Zhao, Q.-R.; Zhang, X.; You, S.-L. Angew. Chem., Int. Ed. 2019, 58, 18069.
[11] Li, S.; Xiang, S.-H.; Tan, B. Chin. J. Chem. 2020, 38, 213.
[12] Yang, G.; Zhang, W. Chem. Soc. Rev. 2018, 47, 1783.
[13] Wang, H. Catalysts 2019, 9, 244.
[14] Guo, W.; Liu, X.; Liu, Y.; Li, C. ACS Catal. 2018, 8, 328.
[15] Qian, D.; Sun, J. Chem.-Eur. J. 2019, 25, 3740.
[16] Jiang, F.; Chen, K.-W.; Wu, P.; Zhang, Y.-C.; Shi, F.; Jiao, Y.; Jiang, F.; Chen, K.-W.; Wu, P.; Zhang, Y.-C.; Jiao, Y.; Shi, F. Angew. Chem., Int. Ed. 2019, 58, 15104
[17] Park, H. G.; Jeong, B. S.; Yoo, M. S.; Lee, J. H.; Park, M. K.; Lee, Y. J.; Kim, M. J.; Jew, S. S. Angew. Chem., Int. Ed. 2002, 41, 3036.
[18] Belokon, Y. N.; Bespalova, N. B.; Churkina, T. D.; Cisarova, I.; Ezernitskaya, M. G.; Harutyunyan, S. R.; Hrdina, R.; Kagan, H. B.; Kocovsky, P.; Kochetkov, K. A.; Larionov, O. V.; Lyssenko, K. A.; North, M.; Polasek, M.; Peregudov, A. S.; Prisyazhnyuk, V. V.; Vyskocil, S. J. Am. Chem. Soc. 2003, 125, 12860.
[19] Lygo, B.; Andrews, B. I. Acc. Chem. Res. 2004, 37, 518.
[20] O'Donnell, M. J. Acc. Chem. Res. 2004, 37, 506.
[21] Kitamra, M.; Shirakawa, S.; Maruoka, K. Angew. Chem., Int. Ed. 2005, 44, 1549.
[22] Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 1999, 121, 6519.
[23] Ooi, T.; Takeuchi, M.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2000, 122, 5228.
[24] Ooi, T.; Takahashi, M.; Doda, K.; Maruoka, K. J. Am. Chem. Soc. 2002, 124, 7640.
[25] Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 5139.
[26] Ooi, T.; Takeuchi, M.; Kato, D.; Uematsu, Y.; Tayama, E.; Sakai, D.; Maruoka, K. J. Am. Chem. Soc. 2005, 127, 5073.
[27] Shirakawa, S.; Yamamoto, K.; Kitamura, M.; Ooi, T.; Maruoka, K. Angew. Chem., Int. Ed. 2005, 44, 625.
[28] Freedman, H. H. Pure Appl. Chem. 1986, 58, 857.
[29] Hashimoto, T.; Maruoka, K. Chem. Rev. 2007, 107, 5656.
[30] Shirakawa, S.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 4312.
[31] Hashimoto, T.; Sakata, K.; Tamakuni, F.; Dutton, M. J.; Maruoka, K. Nat. Chem. 2013, 5, 240.
[32] Inukai, T.; Kano, T.; Maruoka, K. Angew. Chem., Int. Ed. 2020, 59, 2211.
[33] Wang, Y.; Ye, J.; Liang, X. Adv. Synth. Catal. 2007, 349, 1033.
[34] Wang, Y.-G.; Maruoka, K. Org. Process Res. Dev. 2007, 11, 628.
[35] Wang, Y.-G.; Ueda, M.; Wang, X.; Han, Z.; Maruoka, K. Tetrahedron 2007, 63, 6042.
[36] Ooi, T.; Uematsu, Y.; Kameda, M.; Maruoka, K. Angew. Chem., Int. Ed. 2002, 41, 1551.
[37] He, R.; Wang, X.; Hashimoto, T.; Maruoka, K. Angew. Chem., Int. Ed. 2008, 47, 9466.
[38] He, R.; Ding, C.; Maruoka, K. Angew. Chem., Int. Ed. 2009, 48, 4559.
[39] He, R.; Shirakawa, S.; Maruoka, K. J. Am. Chem. Soc. 2009, 131, 16620.
[40] Liu, Y.; Usui, A.; Shirakawa, S.; Maruoka, K. Asian J. Org. Chem. 2012, 1, 180.
[41] Shirakawa, S.; Liu, Y.; Usui, A.; Maruoka, K. ChemCatChem 2012, 4, 980.
[42] Ooi, T.; Fujioka, S.; Maruoka, K. J. Am. Chem. Soc. 2004, 126, 11790.
[43] Kano, T.; Yamaguchi, Y.; Maruoka, K. Angew. Chem., Int. Ed. 2009, 48, 1838.
[44] Kano, T.; Sakamoto, R.; Yamaguchi, Y.; Itoh, K.; Maruoka, K. Chem. Commun. 2013, 49, 1118.
[45] Kano, T.; Maruyama, H.; Akiyama, K.; Maruoka, K. Tetrahedron Lett. 2014, 55, 4227.
[46] Kano, T.; Kobayashi, R.; Maruoka, K. Angew. Chem., Int. Ed. 2015, 54, 8471.
[47] Liu, Y.; Arumugam, N.; Almansour, A. I.; Kumar, R. S.; Maruoka, K. Chem. Rec. 2017, 17, 1059.
[48] Ooi, T.; Taniguchi, M.; Kameda, M.; Maruoka, K. Angew. Chem., Int. Ed. 2002, 41, 4542.
[49] Ooi, T.; Kameda, M.; Taniguchi, M.; Maruoka, K. J. Am. Chem. Soc. 2004, 126, 9685.
[50] Ooi, T.; Maruoka, K. Acc. Chem. Res. 2004, 37, 526.
[51] Kano, T.; Yamamoto, A.; Song, S.; Maruoka, K. Bull. Chem. Soc. Jpn. 2011, 84, 1057.
[52] Kano, T.; Yamamoto, A.; Song, S.; Maruoka, K. Chem. Commun. 2011, 47, 4358.
[53] Ooi, T.; Uematsu, Y.; Maruoka, K. J. Am. Chem. Soc. 2006, 128, 2548.
[54] Ooi, T.; Uematsu, Y.; Fujimoto, J.; Fukumoto, K.; Maruoka, K. Tetrahedron Lett. 2007, 48, 1337.
[55] Wang, Y.-G.; Kumano, T.; Kano, T.; Maruoka, K. Org. Lett. 2009, 11, 2027.
[56] Wang, Y.-G.; Mii, H.; Kano, T.; Maruoka, K. Bioorg. Med. Chem. Lett. 2009, 19, 3795.
[57] Kubota, Y.; Shirakawa, S.; Inoue, T.; Maruoka, K. Tetrahedron Lett. 2012, 53, 3739.
[58] Shirakawa, S.; Yamamoto, K.; Maruoka, K. Angew. Chem., Int. Ed. 2015, 54, 838.
[59] Kubota, Y.;Shirakawa, S.; Inoue, T.; Maruoka, K. Tetrahedron Lett. 2012, 53, 3739.
[60] Kozel, V.; Daniliuc, C. D.; Kirsch, P.; Haufe, G. Angew. Chem., Int. Ed. 2017, 56, 15456.
[61] Costantino, A. R.; Ocampo, R. A.; Montiel Schneider, M. G.; Fernandez, G.; Koll, L. C.; Mandolesi, S. D. Synth. Commun. 2013, 43, 3192.
[62] Hattori, T.; Shimazumi, Y.; Goto, H.; Yamabe, O.; Morohashi, N.; Kawai, W.; Miyano, S. J. Org. Chem. 2003, 68, 2099.
[63] Edsall, R. J.; Harris, H. A.; Manas, E. S.; Mewshaw, R. E. Bioorg. Med. Chem. 2003, 11, 3457.Bai, S.; Li, S.; Xu, J.; Peng, X.; Sai, K.; Chu, W.; Tu, Z.; Zeng, C.; Mach, R. H. J. Med. Chem. 2014, 57, 4239.
Outlines

/