Synthesis of 1,2-Dihydroquinolines by Reduction of Quinolines with Sodium Cyanoborohydride

  • Xu-Xu Qing-Feng ,
  • Huang Xian-Yun ,
  • Zhang Xiao ,
  • You Shu-Li
Expand
  • a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    b School of Pharmacy, East China University of Science and Technology, Shanghai 200237

Received date: 2020-04-10

  Revised date: 2020-05-09

  Online published: 2020-05-15

Supported by

Project supported by the Ministry of Science and Technology of China (No. 2016YFA0202900) and the National Natural Science Foundation of China (No. 21821002).

Abstract

An efficient conversion of quinolines to 1,2-dihydroquinolines (50%~96% yield) was developed via the modification of the known methods. It was found that using sodium cyanoborohydride as a reductant would overcome the low conversion often encountered in previous studies. A series of N-alkoxycarbonyl-1,2-dihydroquinolines were obtained through reduction of activated quinolium salts. Notably, with the exception of the 3-and 4-substituted substrates, a mixture of 1,2-dihydro-quinolines and the over reduced tetrahydroquinolines was obtained with the ratio over 4:1. Besides, compared to the established methods, an easy operation without using large excess of chloroformate further enhances practicability of the methodology.

Cite this article

Xu-Xu Qing-Feng , Huang Xian-Yun , Zhang Xiao , You Shu-Li . Synthesis of 1,2-Dihydroquinolines by Reduction of Quinolines with Sodium Cyanoborohydride[J]. Chinese Journal of Organic Chemistry, 2020 , 40(10) : 3446 -3451 . DOI: 10.6023/cjoc202004015

References

[1] (a) Belleau, B.; Martel, R. R.; Lacasse, G.; Menard, M.; Weinberg, N. L.; Perron, Y. G. J. Am. Chem. Soc. 1968, 90, 823.
(b) Dillard, R. D.; Pavey, D. E.; Benslay, D. N. J. Med. Chem. 1973, 16, 251.
(c) Takahashi, H.; Bekkali, Y.; Capolino, A. J.; Gilmore, T.; Goldrick, S. E.; Nelson, R. M.; Trenzio, D.; Wang, J.; Zuvela-Jelaska, L.; Proudfoot, J.; Nabozny, G.; Thomson, D. Bioorg. Med. Chem. Lett. 2006, 16, 1549.
(d) Victor, N. J.; Sakthivel, R.; Muraleedharan, K. M.; Karunagaran, D. ChemMedChem 2013, 8, 1623.
(e) Duggirala, S.; Napoleon, J. V.; Nankar, R. P.; Adeeba, V. S.; Manheri, M. K.; Doble, M. Eur. J. Med. Chem. 2016, 123, 557.
[2] (a) Jean-Gérard, L.; Macé, F.; Ngo, A. N.; Pauvert, M.; Dentel, H.; Evain, M.; Collet, S.; Guingant, A. Eur. J. Org. Chem. 2012, 2012, 4240.
(b) Ren, X.; Li, G.; Huang, J.; Wang, W.; Zhang, Y.; Xing, G.; Gao, C.; Zhao, G.; Zhao, J.; Tang, Z. Org. Lett. 2017, 19, 58.
(c) Graham, T. J. A.; Shields, J. D.; Doyle, A. G. Chem. Sci. 2011, 2, 980.
(d) Kodama, T.; Moquist, P. N.; Schaus, S. E. Org. Lett. 2011, 13, 6316.
(e) Sun, S.; Mao, Y.; Lou, H.; Liu, L. Chem. Commun. 2015, 51, 10691.
(f) Volla, C. M. R.; Fava, E.; Atodiresei, I.; Rueping, M. Chem. Commun. 2015, 51, 15788.
(g) Berti, F.; Malossi, F.; Marchetti, F.; Pineschi, M. Chem. Commun. 2015, 51, 13694.
(h) Liu, Z.; Zhao, R.; He, N.; Li, W. Chin. J. Org. Chem. 2018, 38, 1261(in Chinese). (刘子强, 赵冉, 贺妮, 李伟, 有机化学, 2018, 38, 1261.)
[3] (a) Li, G.; Liu, H.; Wang, Y.; Zhang, S.; Lai, S.; Tang, L.; Zhao, J.; Tang, Z. Chem. Commun. 2016, 52, 2304.
(b) Kubota, K.; Watanabe, Y.; Ito, H. Adv. Synth. Catal. 2016, 358, 2379.
(c) Kong, D.; Han, S.; Wang, R.; Li, M.; Zi, G.; Hou, G. Chem. Sci. 2017, 8, 4558.
(d) Kong, D.; Han, S.; Zi, G.; Hou, G.; Zhang, J. J. Org. Chem. 2018, 83, 1924.
(e) Xu-Xu, Q.-F.; Zhang, X.; You, S.-L. Org. Lett. 2019, 21, 5357.
(f) Wedek, V.; Lommel, R. V.; Daniliuc, C. G.; Proft, F. D.; Hennecke, U. Angew. Chem. Int. Ed. 2019, 58, 9239.
(g) Xu-Xu, Q.-F.; Zhang, X.; You, S.-L. Org. Lett. 2020, 22, 1530.
[4] For a related reaction by using 1, 2-dihydropyridines, see:Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. J. Am. Chem. Soc. 2016, 138, 4338.
[5] (a) Tiwari, V. K.; Pawar, G. G.; Das, R.; Adhikary, A.; Kapur, M. Org. Lett. 2013, 15, 3310.
(b) Das, R.; Khot, N. P.; Deshpande, A. S.; Kapur, M. Chem. Eur. J. 2020, 26, 927.
[6] Pang, M.; Chen, J.-Y.; Zhang, S.; Liao, R.-Z.; Tung, C.-H.; Wang, W. Nat. Commun. 2020, 11, 1249.
[7] (a) Luo, Y.; Li, Z.; Li, C.-J. Org. Lett. 2005, 7, 2675.
(b) Liu, X.; Lu, Y. Org. Biomol. Chem. 2010, 8, 4063.
(c) Zhu, C.; Ma, S. Angew. Chem. Int. Ed. 2014, 53, 13532.
(d) Luo, Q.; Xie, Y.; Chen, Z.; Yan, S.; Deng, W.; Liu, Y.; Wang, L. Chin. J. Org. Chem. 2014, 34, 2537(in Chinese). (罗倩, 谢永新, 陈朝阳, 闫世友, 邓文叶, 刘义, 王璐璐, 有机化学, 2014, 34, 2537.)
(e) Ding, D.; Mou, T.; Feng, M.; Jiang, X. J. Am. Chem. Soc. 2016, 138, 5218.
(f) Kuppusamy, R.; Santhoshkumar, R.; Boobalan, R.; Wu, H.-R.; Cheng, C.-H. ACS Catal. 2018, 8, 1880.
(g) Wang, G.; Huang, H.; Guo, W.; Qian, C.; Sun, J. Angew. Chem. Int. Ed. 2020, 59, 11245.
[8] For selected reviews, see: (a) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem. Rev. 2012, 112, 2557.
(b) Luo, Y.-E.; He, Y.-M.; Fan, Q.-H. Chem. Rec. 2016, 16, 2697.
(c) Giustra, Z. X.; Ishibashi, J. S. A.; Liu, S.-Y. Coord. Chem. Rev. 2016, 314, 134.
(d) Meng, W.; Feng, X.; Du, H. Acc. Chem. Res. 2018, 51, 191.
(e) Meng, W.; Feng, X.; Du, H. Chin. J. Chem. 2020, 38, 625. For recent examples, see:
(f) Cai, X.-F.; Huang, W.-X.; Chen, Z.-P.; Zhou, Y.-G. Chem. Commun. 2014, 50, 9588.
(g) Li, B.; Xu, C.; He, Y.-M.; Deng, G.-J.; Fan, Q.-H. Chin. J. Chem. 2018, 36, 1169.
(h) Chen, Y.; He, Y.-M.; Zhang, S.; Miao, T.; Fan, Q.-H. Angew. Chem. Int. Ed. 2019, 58, 3809.
(i) Hu, X.-H.; Hu, X.-P. Org. Lett. 2019, 21, 10003.
(j) Liu, Y.; Chen, F.; He, Y.-M.; Li, C.; Fan, Q.-H. Org. Biomol. Chem. 2019, 17, 5099.
(k) Chen, Y.; Pan, Y.; He, Y.-M.; Fan, Q.-H. Angew. Chem. Int. Ed. 2019, 58, 16831.
(l) Li, X.; Tian, J.-J.; Liu, N.; Tu, X.-S.; Zeng, N.-N.; Wang, X.-C. Angew. Chem. Int. Ed. 2019, 58, 4664.
(m) Tao, L.; Ren, Y.; Li, C.; Li, H.; Chen, X.; Liu, L.; Yang, Q. ACS Catal. 2020, 10, 1783.
(n) Wang, L.-R.; Chang, D.; Feng, Y.; He, Y.-M.; Deng, G.-J.; Fan, Q.-H. Org. Lett. 2020, 22, 2251.
[9] For selected reviews, see: (a) Zheng, C.; You, S.-L. Chem. Soc. Rev. 2012, 41, 2498. For recent examples, see:
(b) Cai, X.-F.; Guo, R.-N.; Feng, G.-S.; Wu, B.; Zhou, Y.-G. Org. Lett. 2014, 16, 2680.
(c) Cai, X.-F.; Guo, R.-N.; Chen, M.-W.; Shi, L.; Zhou, Y.-G. Chem. Eur. J. 2014, 20, 7245.
(d) Guo, R.-N.; Chen, Z.-P.; Cai, X.-F.; Zhou, Y.-G. Synthesis 2014, 46, 2751.
(e) Wang, J.; Chen, M.-W.; Ji, Y.; Hu, S.-B.; Zhou, Y.-G. J. Am. Chem. Soc. 2016, 138, 10413.
(f) Aillerie, A.; Lemau de Talencé, V.; Dumont, C.; Pellegrini, S.; Capet, F.; Bousquet, T.; Pélinski, L. New J. Chem. 2016, 40, 9034.
(g) Zhang, J.-F.; Zhong, R.; Zhou, Q.; Hong, X.; Huang, S.; Cui, H.-Z.; Hou, X.-F. ChemCatChem 2017, 9, 2496.
(h) Mitra, R.; Zhu, H.; Grimme S.; Niemeyer, J. Angew. Chem. Int. Ed. 2017, 56, 11456.
(i) Qiao, X.; El-Shahat, M.; Ullah, B.; Bao, Z.; Xing, H.; Xiao, L.; Ren, Q.; Zhang, Z. Tetrahedron Lett. 2017, 58, 2050.
(j) Han, Y.; Wang, Z.; Xu, R.; Zhang, W.; Chen, W.; Zheng, L.; Zhang, J.; Luo, J.; Wu, K.; Zhu, Y.; Chen, C.; Peng, Q.; Liu, Q.; Hu, P.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2018, 57, 11262.
(k) Chen, X.; Chen, J.; Bao, Z.; Yang, Q.; Yang, Y.; Ren, Q.; Zhang, Z. Chin. J. Org. Chem. 2019, 39, 1681(in Chinese). (陈晓玲, 陈静雯, 鲍宗必, 杨启炜, 杨亦文, 任其龙, 张治国, 有机化学, 2019, 39, 1681.)
[10] For a review, see: (a) Park, S.; Chang, S. Angew. Chem. Int. Ed. 2017, 56, 7720. For selected examples, see:
(b) Voutchkova, A. M.; Gnanamgari, D.; Jakobsche, C. E.; Butler, C.; Miller, S. J.; Parr, J.; Crabtree, R. H. J. Organomet. Chem. 2008, 693, 1815.
(c) Arrowsmith, M.; Hill, M. S.; Hadlington, T.; Kociok-Köhn, G.; Weetman, C. Organometallics 2011, 30, 5556.
(d) Dudnik, A. S.; Weidner, V. L.; Motta, A.; Delferro, M.; Marks, T. J. Nat. Chem. 2014, 6, 1100.
(e) Intemann, J,; Bauer, H.; Pahl, J.; Maron, L.; Harder, S. Chem. Eur. J. 2015, 21, 11452.
(f) Jeong, J.; Park, S.; Chang, S. Chem. Sci. 2016, 7, 5362.
(g) Liu, Z.-Y.; Wen, Z.-H.; Wang, X.-C. Angew. Chem. Int. Ed. 2017, 56, 5817.
(h) Zhang, F.; Song, H.; Zhuang, X.; Tung, C.-H.; Wang, W. J. Am. Chem. Soc. 2017, 139, 17775.
(i) Rao, B.; Chong, C. C.; Kinjo, R. J. Am. Chem. Soc. 2018, 140, 652.
[11] Too, P. C.; Chan, G. H.; Tnay, Y. L.; Hirao, H.; Chiba, S. Angew. Chem. Int. Ed. 2016, 55, 3719.
[12] Blackburn, B. K.; Frysinger, J. F.; Minter, D. E. Tetrahedron Lett. 1984, 25, 4913.
Outlines

/