Novel Ratio-Based Fluorescent Probe for Intracellular Cys Detection

  • Zhou Xiaoqin ,
  • Cui Mengyuan ,
  • Jia Chengli ,
  • Yang Min ,
  • Ji Min ,
  • Wang Peng
Expand
  • a School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210009;
    b School of Biomedical Engineering, China Pharmaceutical University, Nanjing 211198

Received date: 2020-03-03

  Revised date: 2020-05-04

  Online published: 2020-05-19

Supported by

Project supported by the National Natural Science Foundation of China (No. 81671745).

Abstract

Cysteine is an important biological component of the human body, its levels are related to many diseases. It is especially important to respond quickly and accurately to cysteine concentrations. This study is based on the classical cysteine response mechanism. The thiol group of cysteine undergoes Michael addition to acrylate, and then undergoes intramolecular cyclization to specifically recognize cysteine. A novel ratio-based fluorescent probe was designed and synthesized in this study. The research results found that the probe can specifically recognize cysteine, the detection limit can reach 75 nmol·L-1, can fully respond within 30 min, and has good stability. It exists in cells and has little cytotoxic effects. Therefore, on the basis of solving the problem of poor water solubility, the probe can quickly and accurately analyze the concentration of cysteine in cells, which provides a new means for the study of various diseases and new ideas for the development of chemical materials.

Cite this article

Zhou Xiaoqin , Cui Mengyuan , Jia Chengli , Yang Min , Ji Min , Wang Peng . Novel Ratio-Based Fluorescent Probe for Intracellular Cys Detection[J]. Chinese Journal of Organic Chemistry, 2020 , 40(8) : 2502 -2507 . DOI: 10.6023/cjoc202003007

References

[1] (a) Dai, C. G.; Du, X. J.; Song, Q. H. J. Org. Chem. 2015, 80, 12088.
(b) Ganganboina, A. B.; Dutta Chowdhury, A.; Doong, R. A. ACS Appl. Mater. Interfaces 2018, 10, 614.
[2] Chen, W.; Luo, H.; Liu, X.; Foley, J. W.; Song, X. Anal. Chem. 2016, 88, 3638.
[3] (a) He, L.; Yang, X.; Xu, K.; Lin, W. Anal. Chem. 2017, 89, 9567.
(b) Tian, Q.; Chen, S.; Chen, J.; Liu, R.; Wang, Y.; Yang, X.; Ye, Y. Chin. J. Org. Chem. 2019, 39, 2089(in Chinese). (田庆, 陈双虎, 陈景龙, 刘蕊, 汪雨诗, 杨晓朋, 叶勇, 有机化学, 2019, 39, 2089.)
[4] (a) Dong, B.; Lu, Y.; Zhang, N.; Song, W.; Lin, W. Anal. Chem. 2019, 91, 5513.
(b) Li, S.; Song, D.; Huang, W.; Li, Z.; Liu, Z. Anal. Chem. 2020, 92, 2802.
[5] (a) Cao, X.; Lin, W.; Yu, Q. J. Org. Chem. 2011, 76, 7423.
(b) Chang, M. J.; Joo, J. H.; Lee, M. H. Bull. Korean Chem. Soc. 2019, 40, 539.
(c) Chen, C.; Zhou, L.; Liu, W.; Liu, W. Anal. Chem. 2018, 90, 6138.
[6] Deng, L.; Wu, W.; Guo, H.; Zhao, J.; Ji, S.; Zhang, X.; Yuan, X.; Zhang, C. J. Org. Chem. 2011, 76, 9294.
[7] (a) He, L.; Xu, Q.; Liu, Y.; Wei, H.; Tang, Y.; Lin, W. ACS Appl. Mater. Interfaces 2015, 7, 12809.
(b) Ding, Y.; Pan, Y.; Han, Y. Ind. Eng. Chem. Res. 2019, 58, 7786.
[8] (a) Guo, L.; Chan, M. S.; Xu, D.; Tam, D. Y.; Bolze, F.; Lo, P. K.; Wong, M. S. ACS Chem. Biol. 2015, 10, 1171-5.
(b) He, L.; Yang, Y.; Lin, W. Anal. Chem. 2019, 91, 15220.
(c) Ji, Y.; Wang, Y.; Zhang, N.; Xu, S.; Zhang, L.; Wang, Q.; Zhang, Q.; Hu, H. Y. J. Org. Chem. 2019, 84, 1299.
[9] Fu, Z. H.; Han, X.; Shao, Y.; Fang, J.; Zhang, Z. H.; Wang, Y. W.; Peng, Y. Anal. Chem. 2017, 89, 1937.
[10] (a) Sun, S.; Qiao, B.; Jiang, N.; Wang, J.; Zhang, S.; Peng, X. Org. Lett. 2014, 16, 1132.
(b) Yang, L. L.; Zou, S. Y.; Fu, Y. H.; Li, W.; Wen, X. P.; Wang, P. Y.; Wang, Z. C.; Ouyang, G. P.; Li, Z.; Yang, S. J. Agric. Food Chem. 2020, 68, 4285.
[11] (a) Chen, Y.; Zhao, J.; Guo, H.; Xie, L. J. Org Chem. 2012, 77, 2192.
(b) Gong, D.; Han, S. C.; Iqbal, A.; Qian, J.; Cao, T.; Liu, W.; Liu, W.; Qin, W.; Guo, H. Anal. Chem. 2017, 89, 13112.
(c) Zhang, D.; Xu, N.; Li, H.; Yao, Q.; Xu, F.; Fan, J.; Du, J.; Peng, X. Ind. Eng. Chem. Res. 2017, 56, 9303.
[12] (a) Jia, T.; Fu, C.; Huang, C.; Yang, H.; Jia, N. ACS Appl. Mater. Interfaces 2015, 7, 10013.
(b) Sarkar, A.; Fouzder, C.; Chakraborty, S.; Ahmmed, E.; Kundu, R.; Dam, S.; Chattopadhyay, P.; Dhara, K. Chem. Res. Toxicol. 2020, 33, 651.
[13] Luo, Z.; Huang, Z.; Li, K.; Sun, Y.; Lin, J.; Ye, D.; Chen, H.-Y. Anal. Chem. 2018, 90, 2875.
[14] Wang, W. H.; Rusin, O.; Xu, X. Y.; Kim, k. k.; Escobedo, J. O.; Fakayode, S. O.; Fletcher, K. A.; Lowry, M.; Schowalter, C. M.; Lawrence, C. M.; Froczek, F. R.; Warner, I. M.; Strongin, R. M. J. AM. CHEM. SOC. 2005,127, 15949-15958
[15] (a) Chen, J.; Jiang, X.; Carroll, S.; Huang, J.; Wang, J. Org. Lett. 2015, 17, 5978.
(b) Cheng, T.; Huang, W.; Gao, D.; Yang, Z.; Zhang, C.; Zhang, H.; Zhang, J.; Li, H.; Yang, X. F. Anal. Chem. 2019, 91, 10894.
[16] Sinha, S. H.; Owens, E. A.; Feng, Y.; Yang, Y.; Xie, Y.; Tu, Y.; Henary, M.; Zheng, Y. G. Eur. J. Med. Chem. 2012, 54, 647.
[17] Liu, B.; Wang, J.; Zhang, G.; Bai, R.; Pang, Y. ACS Appl. Mater. Interfaces 2014, 6, 4402.
Outlines

/