Polyaniline-Supported Copper-Catalyzed Buchwald-Hartwig Couplings of Pyrimidin-2-amines

  • Chen Ying ,
  • Jing Xiaobi ,
  • Yu Lei
Expand
  • School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002

Received date: 2020-03-17

  Revised date: 2020-05-01

  Online published: 2020-05-19

Supported by

Project supported by the Natural Science Foundation of Jiangsu Province (No. BK20181449), the Jiangsu Provincial Six Talent Peaks Project (No. XCL-090) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Abstract

Buchwald-Hartwig couplings can modify the pyrimidin-2-amines. Since the pyrimidin-2-amine structures widely exist in medicines, the reaction is of significant industrial application values. The polyaniline-supported copper catalyst (Cu@PANI) was synthesized via the oxidative polymerization of aniline in the presence of copper salt and it could catalyze the Buchwald-Hartwig couplings of pyrimidin-2-amines. Since the nitrogen in polyaniline could well coordinate with copper, the reaction did not require additional ligands and occurred at relatively high catalyst turnover numbers (TONs). As a heterogeneous catalyst, Cu@PANI could be recycled and reused to reduce the cost of catalyst, and meet the requirements of industrial application.

Cite this article

Chen Ying , Jing Xiaobi , Yu Lei . Polyaniline-Supported Copper-Catalyzed Buchwald-Hartwig Couplings of Pyrimidin-2-amines[J]. Chinese Journal of Organic Chemistry, 2020 , 40(8) : 2570 -2574 . DOI: 10.6023/cjoc202003044

References

[1] (a) Dorel, R.; Grugel, C. P.; Haydl, A. M. Angew. Chem., Int. Ed. 2019, 58, 17118.
(b) Forero-Cortés, P. A.; Haydl, A. M. Org. Process Res. Dev. 2019, 23, 1478.
(c) Heravi, M. M.; Kheilkordi, Z.; Zadsirjan, V.; Heydari, M.; Malmir, M. J. Organomet. Chem. 2018, 861, 17.
[2] (a) Zhang, X.; Sun, J.; Chen, T.; Yang, C.; Yu, L. Synlett 2016, 27, 2233.
(b) Liu, Y.-F.; Wang, C.-L.; Bai, Y.-J.; Han, N.; Jiao, J.-P.; Qi, X.-L. Org. Process Res. Dev. 2008, 12, 490.
(c) Heo, Y.; Hyun, D.; Kumar, M. R.; Jung, H. M.; Lee, S. Tetrahedron Lett. 2012, 53, 6657.
[3] (a) Bhunia, S.; Vijay Kumar, S.; Ma, D. J. Org. Chem. 2017, 82, 12603.
(b) Ohyoshi, T.; Akemoto, K.; Taniguchi, A.; Ishihara, T.; Kigoshi, H. New J. Chem. 2019, 43, 18442.
(c) Garcia, R. C.; Pech, M. J.; Sommer, R.; Gorman, C. B. J. Org. Chem. 2019, 84, 15079.
(d) Thomas, G. T.; Janusson, E.; Zijlstra, H. S.; McIndoe, J. S. Chem. Commun. 2019, 55, 11727.
[4] (a) Yang, Y.; Li, M.; Cao, H.; Zhang, X.; Yu, L. Mol. Catal. 2019, 474, 110450.
(b) Chu, S.; Cao, H.; Chen, T.; Shi, Y.; Yu, L. Catal. Commun. 2019, 129, 105730.
(c) Zhao, S.; Xu, B.; Yu, L.; Fan, Y. Chin. Chem. Lett. 2018, 29, 475.
(d) Zhao, S.; Xu, B.; Yu, L.; Fan, Y. Chin. Chem. Lett. 2018, 29, 884.
(e) Chen, C.; Cao, K.; Wei, Z.; Zhang, Q.; Yu, L. Mater. Lett. 2018, 226, 63.
(f) Zhang, D.; Wei, Z.; Yu, L. Sci. Bull. 2017, 62, 1325.
[5] (a) Yu, L.; Huang, Y.; Wei, Z.; Ding, Y.; Su, C.; Xu, Q. J. Org. Chem. 2015, 80, 8677.
(b) Yu, L.; Han, Z.; Ding, Y. Org. Process Res. Dev. 2016, 20, 2124.
(c) Wang, Q.; Jing, X.; Han, J.; Yu, L.; Xu, Q. Mater. Lett. 2018, 215, 65.
(d) Zhang, D.; Deng, X.; Zhang, Q.; Han, J.; Yu, L. Mater. Lett. 2019, 234, 216.
(e) Chen, Y.; Zhang, Q.; Jing, X.; Han, J.; Yu, L. Mater. Lett. 2019, 242, 170.
[6] Zhao, H.; Zhu, B.; Sekine, J.; Luo, S.; Yu, H. ACS Appl. Mater. Inter. 2012, 4, 680.
[7] Liu, Y.; Tang, D.; Cao, K.; Yu, L.; Han, J.; Xu, Q. J. Catal. 2018, 360, 250.
[8] (a) Chen, C.; Cao, Y.; Wu, X.; Cai, Y.; Liu, J.; Xu, L.; Ding, K. Chin. Chem. Lett. 2020, 31, 1078.
(b) Cao, H.; Qian, R.; Yu, L. Catal. Sci. Technol. 2020, 10, 3113.
(c) Liu, K.; Deng, J.; Zeng, T.; Chen, X.; Huang, Y.; Cao, Z.; Lin, Y.; He, W. Chin. Chem. Lett. 2020, 31, 1868.
(d) Zheng, Y.; Wu, A.; Ke, Y.; Cao, H.; Yu, L. Chin. Chem. Lett. 2019, 30, 937.
(e) Cao, H.; Zhu, B.; Yang, Y.; Xu, L.; Yu, L.; Xu, Q. Chin. J. Catal. 2018, 39, 899.
[9] Gao, G.; Han, J.; Yu, L.; Xu, Q. Synlett 2019, 30, 1703.
[10] (a) Xie, L.; Peng, S.; Liu, F.; Liu, Y.; Sun, M.; Tang, Z.; Jiang, S.; Cao, Z.; He, W. ACS Sustainable Chem. Eng. 2019, 7, 7193.
(b) Wang, Z.; Yang, L.; Liu, H.; Bao, W.; Tan, Y.; Wang, M.; Tang, Z.; He, W. Chin. J. Org. Chem. 2018, 38, 2639(in Chinese). (王峥, 杨柳, 刘慧兰, 谭英芝, 包文虎, 汪明, 唐子龙, 何卫民, 有机化学, 2018, 38, 2639.)
(c) Fan, X.; Yi, R.; Wang, F.; Zhang, X.; Xu, Q.; Yu, L. Chin. J. Org. Chem. 2018, 38, 2736(in Chinese). (范昕, 易容, 王芳, 张旭, 徐清, 俞磊, 有机化学, 2018, 38, 2736.)
(d) Chen, F.; Chen, Y.; Cao, H.; Xu, Q.; Yu, L. J. Org. Chem. 2018, 83, 14158.
[11] (a) Johansson Seechurn, C. C. C.; Parisel, S. L.; Colacot, T. J. J. Org. Chem. 2011, 76, 7918.
(b) Chen, Y.; Hu, L.; Liang, L.; Guo, F.; Yang Y.; Zhou, B. J. Org. Chem. 2020, 85, 2048.
(c) Elbert, B. L.; Farley, A. J. M.; Gorman, T. W.; Johnson, T. C.; Genicot, C.; Lallemand, B.; Pasau, P.; Flasz, J.; Castro, J. L.; MacCoss, M.; Paton, R. S.; Schofield, C. J.; Smith, M. D.; Willis, M. C.; Dixon, D. J. Chem.-Eur. J. 2017, 23, 14733.
Outlines

/