Recent Progress in Radical Alkylation of Heteroarenes Based on C(sp3)-H bond Cleavage Strategy

  • Luo Wenkun ,
  • Yang Kai ,
  • Yin Biaolin
Expand
  • a Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640;
    b College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000

Received date: 2020-04-14

  Revised date: 2020-05-09

  Online published: 2020-05-19

Supported by

Project supported by the National Natural Science Foundation of China (No. 21871094) and the Scientific Research Project of Gannan Medical University (No. YB201903).

Abstract

Heteroarenes are widely found in synthetic drugs and natural products and exhibit various biological activities. Among them, alkylated heteroarenes play a crucial role in the pharmaceutical industry, and have attracted great attention of synthetic chemists. C(sp3)-H bond cleavage strategy was widely used in radical alkylation of heteroarenes in organic synthesis and has been successfully applied in the total synthesis of natural products and pharmaceuticals due to its excellent atom economy. Based on the different precursor compounds (ethers, alcohols, amines, esters, amides and common alkanes), the research progress of radical alkylation of heteroarenes in a decade is summarized, and the related mechanism is also discussed.

Cite this article

Luo Wenkun , Yang Kai , Yin Biaolin . Recent Progress in Radical Alkylation of Heteroarenes Based on C(sp3)-H bond Cleavage Strategy[J]. Chinese Journal of Organic Chemistry, 2020 , 40(8) : 2290 -2307 . DOI: 10.6023/cjoc202004024

References

[1] McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348.
[2] Roth, E. M.; McKenney, J. M.; Hanotin, C.; Asset, G.; Stein, E. A. New Engl. J. Med. 2012, 367, 1891.
[3] Chan, K. L.; Teo, K.; Dumesnil, J. G.; Ni, A.; Tam, J. Circulation 2010, 121, 306.
[4] Wysham, C.; Blevins, T.; Arakaki, R.; Colon, G.; Garcia, P.; Atisso, C.; Kuhstoss, D.; Lakshmanan, M. Diabetes Care 2014, 37, 2159.
[5] Clotet, B.; Feinberg, J.; van Lunzen, J.; Khuong-Josses, M.-A.; Antinori, A.; Dumitru, I.; Pokrovskiy, V.; Fehr, J.; Ortiz, R.; Saag, M.; Harris, J.; Brennan, C.; Fujiwara, T.; Min, S. Lancet 2014, 383, 2222.
[6] White, W. B.; Weber, M. A.; Sica, D.; Bakris, G. L.; Perez, A.; Cao, C.; Kupfer, S. Hypertension 2011, 57, 413.
[7] Diez, J.; Querejeta, R.; Lopez, B.; Gonzalez, A.; Larman, M.; Ubago, J. L. M. Circulation 2002, 105, 2512.
[8] Yusuf, S.; Teo, K.; Anderson, C.; Pogue, J.; Dyal, L.; Copland, I.; Schumacher, H.; Dagenais, G.; Sleight, P. Lancet 2008, 372, 1174.
[9] Goldstein, I.; Lue, T. F.; Padma-Nathan, H.; Rosen, R. C.; Steers, W. D.; Wicker, P. A. New Engl. J. Med. 1998, 338, 1397.
[10] Ackermann, L. Chem. Commun. 2010, 46, 4866.
[11] Minisci, F.; Galli, R.; Malatesta, V.; Caronna, T. Tetrahedron 1970, 26, 4083.
[12] Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo, M. Tetrahedron 1971, 27, 3575.
[13] DiRocco, D. A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway, D. V.; Tudge, M. Angew. Chem., Int. Ed. 2014, 53, 4802.
[14] Garza-Sanchez, R. A.; Tlahuext-Aca, A.; Tavakoli, G.; Glorius, F. ACS Catal. 2017, 7, 4057.
[15] Gutierrez-Bonet, A.; Remeur, C.; Matsui, J. K.; Molander, G. A. J. Am. Chem. Soc. 2017, 139, 12251.
[16] Xiao, B.; Liu, Z.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 616.
[17] Wu, X.; See, J. W. T.; Xu, K.; Hirao, H.; Roger, J.; Hierso, J.; Zhou, J. R. Angew. Chem., Int. Ed. 2014, 53, 13573.
[18] McCallum, T.; Barriault, L. Chem. Sci. 2016, 7, 4754.
[19] Zhou, W.-J.; Cao, G.-M.; Shen, G.; Zhu, X.-Y.; Gui, Y.-Y.; Ye, J.-H.; Sun, L.; Liao, L.-L.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2017, 56, 15683.
[20] Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95.
[21] Liu, P.; Liu, W.; Li, C.-J. J. Am. Chem. Soc. 2017, 139, 14315.
[22] Klauck, F. J. R.; James, M. J.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 12336.
[23] Li, G. X.; Morales-Rivera, C.; Wang, Y.; Gao, F.; He, G.; Liu, P.; Chen, G. Chem. Sci. 2016, 7, 6407.
[24] Matsui, J. K.; Primer, D. N.; Molander, G. A. Chem. Sci. 2017, 8, 3512.
[25] Correia, C. A.; Yang, L.; Li, C. J. Org. Lett. 2011, 13, 4581.
[26] Xie, Z.; Cai, Y.; Hu, H.; Lin, C.; Jiang, J.; Chen, Z.; Wang, L.; Pan, Y. Org. Lett. 2013, 15, 4600.
[27] Wu, Z.; Pi, C.; Cui, X.; Bai, J.; Wu, Y. Adv. Synth. Catal. 2013, 355, 1971.
[28] Correa, A.; Fiserb, B.; Gόmez-Bengoa, E. Chem. Commun. 2015, 51, 13365.
[29] Neubert, T. D.; Schmidt, Y.; Conroy, E.; Stamos, D. Org. Lett. 2015, 17, 2362.
[30] Jin, L. K.; Wan, L.; Feng, J.; Cai, C. Org. Lett. 2015, 17, 4726.
[31] Wang, C.; Gong, M.; Huang, M.; Li, Y.; Kim, J. K.; Wu, Y. Tetrahedron 2016, 72, 7931.
[32] Li, Y.; Wang, M.; Fan, W.; Qian, F.; Li, G. G.; Lu, H. J. J. Org. Chem. 2016, 81, 11743.
[33] Wu, Y.-H.; Wang, N.-X.; Zhang, T.; Zhang, L.-Y.; Gao, X.-W.; Xu, B.-C.; Xing, Y.; Chi, J.-Y. Org. Lett. 2019, 21, 7450.
[34] Wang, S.; Fan, Y.; Zhao, H.; Wang, J.; Zhang, S.; Wang, W. Synlett 2019, 30, 2096.
[35] He, T.; Yu, L.; Zhang, L.; Wang, L.; Wang, M. Org. Lett. 2011, 13, 5016.
[36] Jin, L.; Feng, J.; Lu, G.; Cai, C. Adv. Synth. Catal. 2015, 357, 2105.
[37] Ambala, S.; Thatikonda, T.; Sharma, S.; Munagala, G.; Yempalla, K. R.; Vishwakarma, R. A.; Singh, P. P. Org. Biomol. Chem. 2015, 13, 11341.
[38] Yang, Q. J.; Choy, P. Y.; Wu, Y. N.; Fan, B. M.; Kwong, F. Y. Org. Biomol. Chem. 2016, 14, 2608.
[39] McCallum, T.; Jouanno, L. A.; Cannillo, A.; Barriault, L. Synlett 2016, 27, 1282.
[40] Liu, S.; Liu, A.; Zhang, Y.; Wang, W. Chem. Sci. 2017, 8, 4044.
[41] Lai, M.; Li, Y.; Wu, Z.; Zhao, M.; Ji, X.; Liu, P.; Zhang, X. Asian J. Org. Chem. 2018, 7, 1118.
[42] Dong, D.-Q.; Li, G.-H.; Chen, D.-M.; Sun, Y.-Y.; Han, Q.-Q.; Wang, Z.-L.; Xu, X.-M.; Yu, X.-Y. Chin. J. Org. Chem. 2020, 40, 1766(in Chinese). (董道青, 李光辉, 陈德茂, 孙媛媛, 韩晴晴, 王祖利, 徐鑫明, 于贤勇, 有机化学, 2020, 40, 1766.)
[43] Jin, J.; MacMillan, D. W. C. Nature 2015, 525, 87.
[44] Jin, J.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 1565.
[45] Huff, C. A.; Cohen, R. D.; Dykstra, K. D.; Streckfuss, E.; DiRocco, D. A.; Krska, S. W. J. Org. Chem. 2016, 81, 6980.
[46] Devariab, S.; Shah, B. A. Chem. Commun. 2016, 52, 1490.
[47] Liu, W.; Yang, X.; Zhou, Z. Z.; Li, C. J. Chem 2017, 2, 688.
[48] McCallum, T.; Pitre, S. P.; Morin, M.; Scaiano, J. C.; Barriault, L. Chem. Sci. 2017, 8, 7412.
[49] Ye, L.; Cai, S.-H.; Wang, D.-X.; Wang, Y.-Q.; Lai, L.-J.; Feng, C.; Loh, T.-P. Org. Lett. 2017, 19, 6164.
[50] Wu, X.; Zhang, H.; Tang, N.; Wu, Z.; Wang, D.; Ji, M.; Xu, Y.; Wang, M.; Zhu, C. Nat. Commun. 2018, 9, 3343.
[51] Ghosh, T.; Maity, P.; Ranu, B. C. Org. Lett. 2018, 20, 1011.
[52] Li, G.-X.; Hu, X.; He, G.; Chen, G. Chem. Sci. 2019, 10, 688.
[53] Niu, L.; Liu, J.; Liang, X.-A.; Wang, S.; Lei, A. Nat. Commun. 2019, 10, 467.
[54] Huang, C.-Y.; Li, J.; Liu, W.; Li, C.-J. Chem. Sci. 2019, 10, 5018.
[55] Vijeta, A.; Reisner, E. Chem. Commun. 2019, 55, 14007.
[56] Wang, Z.; Ji, X.; Han, T.; Deng, G.-J.; Huang, H. Adv. Synth. Catal. 2019, 361, 5643.
[57] Singsardar, M.; Laru, S.; Mondal, S.; Hajra, A. J. Org. Chem. 2019, 84, 4543.
[58] Huang, H.; Strater, Z. M.; Lambert, T. H. J. Am. Chem. Soc. 2020, 142, 1698.
[59] Douglas, J. J.; Cole, K. P.; Stephenson, C. R. J. J. Org. Chem. 2014, 79, 11631.
[60] Sudo, Y.; Yamaguchi, E.; Itoh, A. Org. Lett. 2017, 19, 1610.
[61] Zhang, Y.; Teuscher, K. B.; Ji, H. Chem. Sci. 2016, 7, 2111.
[62] Okugawa, N.; Moriyama, K.; Togo, H. I. J. Org. Chem. 2017, 82, 170.
[63] Dong, J.; Xia, Q.; Lv, X.; Yan, C.; Song, H.; Liu, Y.; Wang, Q. Org. Lett. 2018, 20, 5661.
[64] Bosset, C.; Beucher, H.; Bretel, G.; Pasquier, E.; Queguiner, L.; Henry, C.; Vos, A.; Edwards, J. P.; Meerpoel, L.; Berthelot, D. Org. Lett. 2018, 20, 6003.
[65] Chen, H.; Fan, W.; Yuan, X.-A.; Yu, S. Nat. Commun. 2019, 10, 4743.
[66] Xia, R.; Niu, H.-Y.; Qu, G.-R.; Guo, H.-M. Org. Lett. 2012, 14, 5546.
[67] Antonchick, A. P.; Burgmann, L. Angew. Chem., Int. Ed. 2013, 52, 3267.
[68] Fang, L.; Chen, L.; Yu, J.; Wang, L. Eur. J. Org. Chem. 2015, 1910.
[69] Xiu, J.; Yi, W. Catal. Sci. Technol. 2016, 6, 998.
[70] Wang, D.-C.; Xia, R.; Xie, M.-S.; Qu, G.-R.; Guo, H.-M. Org. Biomol. Chem. 2016, 14, 4189.
[71] Quattrini, M. C.; Fujii, S.; Yamada, K.; Fukuyama, T.; Ravelli, D.; Fagnoni, M.; Ryu, I. Chem. Commun. 2017, 53, 2335.
[72] Wang, X.; Lei, B.; Ma, L.; Zhu, L.; Zhang, X.; Zuo, H.; Zhuang, D.; Li, Z. Chem.-Asian J. 2017, 12, 2799.
[73] Li, G.-X.; Hu, X.; He, G.; Chen, G. ACS Catal. 2018, 8, 11847.
[74] Liang, X.-A.; Niu, L.; Wang, S.; Liu, J.; Lei, A. Org. Lett. 2019, 21, 2441.
[75] Zhao, H.; Jin, J. Org. Lett. 2019, 21, 6179.
[76] Huang, C.; Wang, J.-H.; Qiao, J.; Fan, X.-W.; Chen, B.; Tung, C.-H.; Wu, L.-Z. J. Org. Chem. 2019, 84, 12904.
Outlines

/