Asymmetric Photoinduced Giese Radical Addition Enabled by a Single Chiral-at-Metal Rhodium Complex

  • Chen Liang ,
  • Hu Liangjian ,
  • Du Yu ,
  • Su Weiping ,
  • Kang Qiang
Expand
  • a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002;
    b University of Chinese Academy of Sciences, Beijing 100049;
    c College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002

Received date: 2020-04-25

  Revised date: 2020-05-14

  Online published: 2020-05-19

Supported by

Project supported by the National Natural Science Foundation of China (No. 21871261).

Abstract

A visible-light driven asymmetric Giese radical addition catalyzed by a bifunctional chiral-at-metal rhodium complex has been developed. para-Aminobenzyl radicals generated from para-aminophenylacetic acids could undergo a 1,4-addition in a highly enantioselective approach to α,β-unsaturated 2-acyl imidazoles, and a variety of corresponding adducts were obtained in moderate to high yields with excellent enantioselectivities. This reaction features high enantioselectivity, mild reaction conditions and an operationally simple procedure. A plausible reaction mechanism is proposed based on our research and literature precedents on dual functional chiral-at-metal catalysis.

Cite this article

Chen Liang , Hu Liangjian , Du Yu , Su Weiping , Kang Qiang . Asymmetric Photoinduced Giese Radical Addition Enabled by a Single Chiral-at-Metal Rhodium Complex[J]. Chinese Journal of Organic Chemistry, 2020 , 40(11) : 3944 -3952 . DOI: 10.6023/cjoc202004041

References

[1] For selected reviews on visible-light photoredox catalysis, see:(a) Xuan, J.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 6828.
(b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(c) Douglas, J. J.; Sevrin, M. J.; Stephenson, C. R. J. Org. Process Res. Dev. 2016, 20, 1134.
(d) Gentry, E. C.; Knowles, R. R. Acc. Chem. Res. 2016, 49, 1546.
(e) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
(f) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898.
(g) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
(h) Parasram, M.; Gevorgyan, V. Chem. Soc. Rev. 2017, 46, 6227.
(i) Larsen, C. B.; Wenger, O. S. Chem.-Eur. J. 2018, 24, 2039.
(j) Marzo, L.; Pagire, S. K.; Reiser, O.; Konig, B. Angew. Chem., Int. Ed. 2018, 57, 10034.
(k) Zhao, Y. T.; Xia, W. J. Chem. Soc. Rev. 2018, 47, 2591.
(l) Chuentragool, P.; Kurandina, D.; Gevorgyan, V. Angew. Chem., Int. Ed. 2019, 58, 11586.
(m) Zhou, Q. Q.; Zou, Y. Q.; Lu, L. Q.; Xiao, W. J. Angew. Chem., Int. Ed. 2019, 58, 1586.
(n) Xiao, L.; Li, J. H.; Wang, T. Acta Chim. Sinica 2019, 77, 841(in Chinese). (肖丽, 李嘉恒, 王挺, 化学学报, 2019, 77, 841.)
(o) Chen, Y. L.; Chang, L.; Zuo, Z. W. Acta Chim. Sinica 2019, 77, 794(in Chinese). (陈奕霖, 常亮, 左智伟, 化学学报, 2019, 77, 794.)
(p) Chen, D.; Liu, J. C.; Zhang, X. Y.; Jiang, H. Z.; Li, J. H. Chin. J. Org. Chem. 2019, 39, 3353(in Chinese). (陈丹, 刘剑沉, 张馨元, 蒋合众, 李加洪, 有机化学, 2019, 39, 3353.)
(q) Zhang, H.; Yu, S. Y. Chin. J. Org. Chem. 2019, 39, 95(in Chinese). (张昊, 俞寿云, 有机化学, 2019, 39, 95.)
[2] For recent reviews on asymmetric photoredox catalysis, see:(a) Meggers, E. Chem. Commun. 2015, 51, 3290.
(b) Wang, C. F.; Lu, Z. Org. Chem. Front. 2015, 2, 179.
(c) Yoon, T. P. Acc. Chem. Res. 2016, 49, 2307.
(d) Wang, D. H.; Zhang, L.; Luo, S. Z. Acta Chim. Sinica 2017, 75, 22(in Chinese). (王德红, 张龙, 罗三中, 化学学报, 2017, 75, 22.)
(e) Brenninger, C.; Jolliffe, J. D.; Bach, T. Angew. Chem., Int. Ed. 2018, 57, 14338.
(f) Garrido-Castro, A. F.; Maestro, M. C.; Aleman, J. Tetrahedron Lett. 2018, 59, 1286.
(g) Silvi, M.; Melchiorre, P. Nature 2018, 554, 41.
(h) Zou, Y. Q.; Hormann, F. M.; Bach, T. Chem. Soc. Rev. 2018, 47, 278.
(i) Jiang, C.; Chen, W.; Zheng, W. H.; Lu, H. Org. Biomol. Chem. 2019, 17, 867
[3] For examples of deracemization enabled by visible-light photocatalysis, see:(a) Hoelzl-Hobmeier, A.; Bauer, A.; Silva, A. V.; Huber, S. M.; Bannwarth, C.; Bach, T. Nature 2018, 564, 240.
(b) Shin, N. Y.; Ryss, J. M.; Zhang, X.; Miller, S. J.; Knowles, R. R. Science 2019, 366, 364.
(c) Troster, A.; Bauer, A.; Jandl, C.; Bach, T. Angew. Chem., Int. Ed. 2019, 58, 3538.
(d) Shi, Q.; Ye, J. Angew. Chem., Int. Ed. 2020, 59, 4998.
[4] For selected examples of dual catalysis systems, see:(a) Blum, T. R.; Miller, Z. D.; Bates, D. M.; Guzei, I. A.; Yoon, T. P. Science 2016, 354, 1391.
(b) Capacci, A. G.; Malinowski, J. T.; McAlpine, N. J.; Kuhne, J.; MacMillan, D. W. C. Nat. Chem. 2017, 9, 1073.
(c) Lin, L.; Bai, X.; Ye, X.; Zhao, X.; Tan, C. H.; Jiang, Z. Angew. Chem., Int. Ed. 2017, 56, 13842.
(d) Yang, Q.; Zhang, L.; Ye, C.; Luo, S. Z.; Wu, L. Z.; Tung, C. H. Angew. Chem., Int. Ed. 2017, 56, 3694.
(e) Proctor, R. S. J.; Davis, H. J.; Phipps, R. J. Science 2018, 360, 419.
(f) Ye, C.-X.; Melcamu, Y. Y.; Li, H.-H.; Cheng, J.-T.; Zhang, T.-T.; Ruan, Y.-P.; Zheng, X.; Lu, X.; Huang, P.-Q. Nat. Commun. 2018, 9, 410.
(g) Zhang, H. H.; Zhao, J. J.; Yu, S. J. Am. Chem. Soc. 2018, 140, 16914.
(h) Cheng, Y. Z.; Zhao, Q. R.; Zhang, X.; You, S. L. Angew. Chem., Int. Ed. 2019, 58, 18069.
(i) Li, Y.; Lei, M.; Gong, L. Nat. Catal. 2019, 2, 1016.
(j) Zhang, K.; Lu, L. Q.; Jia, Y.; Wang, Y.; Lu, F. D.; Pan, F.; Xiao, W. J. Angew. Chem., Int. Ed. 2019, 58, 13375.
(k) Cheng, Z. M.; Chen, P. H.; Liu, G. S. Acta Chim. Sinica 2019, 77, 856(in Chinese). (成忠明, 陈品红, 刘国生, 化学学报, 2019, 77, 856.)
[5] For selected examples of bifunctional photocatalysts, see:(a) Arceo, E.; Jurberg, I. D.; Alvarez-Fernandez, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750.
(b) Ding, W.; Lu, L. Q.; Zhou, Q. Q.; Wei, Y.; Chen, J. R.; Xiao, W. J. J. Am. Chem. Soc. 2017, 139, 63.
(c) Silvi, M.; Verrier, C.; Rey, Y. P.; Buzzetti, L.; Melchiorre, P. Nat. Chem. 2017, 9, 868.
(d) Skubi, K. L.; Kidd, J. B.; Jung, H.; Guzei, I. A.; Baik, M. H.; Yoon, T. P. J. Am. Chem. Soc. 2017, 139, 17186.
(e) Li, Y.; Zhou, K.; Wen, Z.; Cao, S.; Shen, X.; Lei, M.; Gong, L. J. Am. Chem. Soc. 2018, 140, 15850.
(f) Rigotti, T.; Casado-Sanchez, A.; Cabrera, S.; Perez-Ruiz, R.; Liras, M.; O'Shea, V. A. D.; Aleman, J. ACS Catal. 2018, 8, 5928.
(g) Shen, X.; Li, Y.; Wen, Z.; Cao, S.; Hou, X.; Gong, L. Chem. Sci. 2018, 9, 4562.
(h) Stegbauer, S.; Jandl, C.; Bach, T. Angew. Chem., Int. Ed. 2018, 57, 14593.
(i) Guo, Q.; Wang, M.; Peng, Q.; Huo, Y.; Liu, Q.; Wang, R.; Xu, Z. ACS Catal. 2019, 9, 4470.
[6] (a) Giese, B. Angew. Chem., Int. Ed. 1983, 22, 753.
(b) Giese, B.; González-Gómez, J. A.; Witzel, T. Angew. Chem., Int. Ed. 1984, 23, 69.
[7] (a) Wu, J. H.; Radinov, R.; Porter, N. A. J. Am. Chem. Soc. 1995, 117, 11029.
(b) Sibi, M. P.; Ji, J.; Wu, J. H.; Gürtler, S.; Porter, N. A. J. Am. Chem. Soc. 1996, 118, 9200.
(c) Sibi, M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32, 163.
[8] Espelt, L. R.; McPherson, I. S.; Wiensch, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2015, 137, 2452.
[9] (a) Zuo, Z. W.; Ahneman, D. T.; Chu, L. L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437.
(b) Zuo, Z. W.; Gong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 1832.
[10] For accounts on synthetic utilization of α-aminoalkyl radicals in visible-light photoredox catalysis, see:(a) Cho, D. W.; Yoon, U. C.; Mariano, P. S. Acc. Chem. Res. 2011, 44, 204.
(b) Nakajima, K.; Miyake, Y.; Nishibayashi, Y. Acc. Chem. Res. 2016, 49, 1946.
[11] (a) Cermenati, L.; Mella, M.; Albini, A. Tetrahedron 1998, 54, 2575.
(b) Smitha, M. A.; Prasad, E.; Gopidas, K. R. J. Am. Chem. Soc. 2001, 123, 1159.
(c) Yoshimi, Y.; Kobayashi, K.; Kamakura, H.; Nishikawa, K.; Haga, Y.; Maeda, K.; Morita, T.; Itou, T.; Okada, Y.; Hatanaka, M. Tetrahedron Lett. 2010, 51, 2332.
(d) Miyake, Y.; Nakajima, K.; Nishibayashi, Y. Chem. Commun. 2013, 49, 7854.
(e) Lang, S. B.; O'Nele, K. M.; Tunge, J. A. J. Am. Chem. Soc. 2014, 136, 13606.
[12] (a) Bauer, E. B. Chem. Soc. Rev. 2012, 41, 3153.
(b) Cao, Z.-Y.; Brittain, W. D. G.; Fossey, J. S.; Zhou, F. Catal. Sci. Technol. 2015, 5, 3441.
(c) Zhang, L.; Meggers, E. Chem.-Asian. J. 2017, 12, 2335.
(d) Cruchter, T.; Larionov, V. A. Coord. Chem. Rev. 2018, 376, 95.
[13] Lin, S. X.; Sun, G. J.; Kang, Q. Chem. Commun. 2017, 53, 7665.
[14] CCDC 1998446 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[15] (a) Ohta, S.; Hayakawa, S.; Nishimura, K.; Okamoto, M. Chem. Pharm. Bull. 1987, 35, 1058.
(b) Miyashita, A.; Suzuki, Y.; Nagasaki, I.; Ishiguro, C.; Iwamoto, K.-I.; Higashino, T. Chem. Pharm. Bull. 1997, 45, 1254.
[16] (a) de Assis, F. F.; Huang, X.; Akiyama, M.; Pilli, R. A.; Meggers, E. J. Org. Chem. 2018, 83, 10922.
(b) Ma, J.; Lin, J.; Zhao, L.; Harms, K.; Marsch, M.; Xie, X.; Meggers, E. Angew. Chem., Int. Ed. 2018, 57, 11193.
[17] Wang, C.; Chen, L. A.; Huo, H.; Shen, X.; Harms, K.; Gong, L.; Meggers, E. Chem. Sci. 2015, 6, 1094.
[18] Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Rose, P.; Chen, L. A.; Harms, K.; Marsch, M.; Hilt, G.; Meggers, E. Nature 2014, 515, 100.
Outlines

/