A New Approach to the Synthesis of Acteoside

  • Hu Zhifei ,
  • Xu Peng ,
  • Yu Biao
Expand
  • a School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210;
    b State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2020-04-30

  Revised date: 2020-05-13

  Online published: 2020-05-19

Supported by

Project supported by the National Key Research & Development Program of China (No. 2018YFC0310900), the National Natural Science Foundation of China (No. 21621002), the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (No. ZDBS-LY-SLH030), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB20020000), and the K. C. Wong Education Foundation.

Abstract

A new approach to the synthesis of acteoside, a prototypical phenylpropanoid glycoside with a variety of biological activities, has been developed. The synthesis employed a regioselective glycosylation as a key step, in which a gold(I)-catalyzed glycosylation of p-tolyl 6-O-acetyl-1-thio-β-D-glucopyranoside with peracetyl L-rhamnopyranosyl ortho-alkynylbenzoate led to the desired α-(1→3) linked disaccharide 7-1 in a satisfactory yield. The resultant disaccharide was converted into the corresponding ortho-alkynylbenzoate donor and subjected to glycosylation with aglycone, subsequent deprotection of the protecting groups furnished acteoside.

Cite this article

Hu Zhifei , Xu Peng , Yu Biao . A New Approach to the Synthesis of Acteoside[J]. Chinese Journal of Organic Chemistry, 2020 , 40(10) : 3439 -3445 . DOI: 10.6023/cjoc202004052

References

[1] (a) Molgaard, P.; Ravn, H. Phytochemistry 1988, 27, 2411.
(b) Park, H. J.; Jung, W. T.; Basnet, P.; Kadota, S.; Namba, T. J. Nat. Prod. 1996, 59, 1128.
[2] (a) Scarpati, M. L.; Monache, D. Ann. Chim. (Rome, Italy) 1963, 53, 356.
(b) Nonaka, G.; Nishioka, I. Phytochemistry 1977, 16, 1265.
(c) Baudouin, G.; Skaltsounis, A.L.; Tillequin, F.; Koch, M. Planta Med. 1988, 54, 321.
[3] Birkofer, L.; Kaiser, C.; Thomas, U. Z. Naturforscher 1968, 23b, 1051.
[4] Leporini, L.; Menghini, L.; Foddai, M.; Petretto, G. L.; Chessa, M.; Tirillini, B.; Pintore, G. Nat. Prod. Res. 2015, 29, 899.
[5] Rao, K. Y.; Lien, H.-M.; Lin, Y.-H.; Hsu, Y.-M.; Yeh, C.-T.; Chen, C.-C.; Lai, C.-H.; Tzeng, Y.-M. Food Chem. 2012, 132, 780.
[6] (a) Inoue, M.; Sakuma, Z.; Ogihara, Y.; Saracoglu, I. Biol. Pharm. Bull. 1998, 21, 81.
(b) Li, J.; Zheng, Y.; Zhou, H.; Su, B.; Zheng, R. Planta Med. 1997, 63, 499.
[7] Kernan, M. R.; Amarquaye, A.; Chen, J. L.; Chan, J.; Sesin, D. F.; Parkinson, N.; Ye, Z.; Barrett, M.; Bales, C.; Stoddart, C. A.; Sloan, B.; Blanc, P.; Limbach, C.; Mrisho, S.; Rozhon, E. J. J. Nat. Prod. 1998, 61, 564.
[8] Morikawa, T.; Pan, Y.; Ninomiya, K.; Imura, K.; Matsuda, H.; Yoshikawa, M.; D. Yuan D.; Muraoka, O. Bioorg. Med. Chem. 2010, 18, 1882.
[9] He, J.; Hu, X.-P.; Zeng, Y.; Li, Y.; Wu, H.-Q.; Qiu, R.-Z.; Ma, W.-J.; Li, T.; Li, C.-Y.; He, Z.-D. J. Asian Nat. Prod. Res. 2011, 13, 449.
[10] Kawada, T.; Asano, R.; Hayashida, S.; Sakuno, T. J. Org. Chem. 1999, 64, 9268.
[11] Duynstee, H. I.; de Koning, M. C.; Ovaa, H.; van der Marel, G. A.; van Boom, J. H. Eur. J. Org. Chem. 1999, 10, 2623.
[12] (a) Zhang, S.-Q.; Li, Z.-J.; Wang, A.-B.; Cai, M.-S.; Feng, R. Carbohydr. Res. 1997, 299, 281.
(b) Zhang, S.-Q.; Li, Z.-J.; Wang, A.-B.; Cai, M.-S.; Feng, R. Carbohydr. Res. 1998, 308, 281.
(c) Li, Q.; Li, S.-C.; Li, H.; Cai, M.-S.; Li, Z.-J. Carbohydr. Res. 2005, 340, 1601.
[13] Das, S. K.; Reddy, K. A.; Mukkanti, K. Carbohydr. Res. 2007, 342, 2309.
[14] Liu, Y.-G.; Li, X.; Xiong, D.-C.; Yu, B.; Pu, X.; Ye, X.-S. Eur. J. Med. Chem. 2015, 95, 313.
[15] (a) Shu, P.; Xiao, X.; Zhao, Y.; Xu, Y.; Yao, W.; Tao, J.; Wang, H.; Yao, G.; Lu, Z.; Zeng, J.; Wan, Q. Angew. Chem., Int. Ed. 2015, 54, 14432.
(b) Zhao, Y.; Zeng, J.; Liu, Y.; Xiao, X.; Sun, G.; Sun, J.; Shu, P.; Fu, D.; Meng, L.; Wan, Q. J. Carbohydr. Chem. 2018, 37, 471.
[16] (a) Khong, D. T.; Judeh, Z. M. A. Carbohydr. Res. 2016, 436, 50.
(b) Khong, D. T.; Judeh, Z. Org. Biomol. Chem. 2017, 15, 2638.
(c) Khong, D. T.; Judeh, Z. M. A. Tetrahedron Lett. 2017, 58, 109.
[17] Yu, B.; Li, B.; Xing, G.; Hui, Y. J. Comb. Chem. 2001, 3, 404.
[18] (a) Yu, B. Acc. Chem. Res. 2018, 51, 507.
(b) Zhu, D.; Yu, B. Chin. J. Chem. 2018, 36, 681.
(c) Ehianeta, T. S.; Shen, D.; Xu, P.; Yu, B. Chin. J. Chem. 2019, 37, 827.
(d) Shao, W. B.; An, Q. L.; Cao, X.; Yu, B. Acta Chim. Sinica 2019, 77, 999(in Chinese). (邵文博, 安泉林, 曹鑫, 俞飚, 化学学报, 2019, 77, 999.)
(e) Shen, R. Z.; Cao, X.; Yu, B. Acta Chim. Sinica 2018, 76, 278(in Chinese). (沈仁增, 曹鑫, 俞飚, 化学学报, 2018, 76, 278.)
[19] (a) Li, Y.; Yang, Y.; Yu, B. Tetrahedron Lett. 2008, 49, 3604.
(b) Yoshimura, F.; Itoh, R.; Torizuka, M.; Mori, G.; Tanino, K. Angew. Chem., Int. Ed. 2018, 57, 17161.
[20] Liang, P.-H.; Lu, Y.-J.; Tang, T.-H. Tetrahedron Lett. 2010, 51, 6928.
[21] Kong, F. Carbohydr. Res. 2007, 342, 345.
[22] Rakesh, J.; Dickman, M. H.; Kuhnert, N. Org. Biomol. Chem. 2012, 10, 5266.
[23] Hu, Z. F.; Silipo, A.; Li, W.; Molinaro, A.; Yu, B. J. Org. Chem. 2019, 84, 13733.
[24] (a) Crich, D.; Smith, M. J. Am. Chem. Soc. 2002, 124, 8867.
(b) Codée, J. D. C.; Litjens, R. E. J. N.; den Heeten, R.; Overkleeft, H. S.; van Boom, J. H.; van der Marel, G. A. Org. Lett. 2003, 5, 1519.
[25] Xu, J.; Liu, Y.; Dupouy, C.; Chattopadhyaya, J. J. Org. Chem. 2009, 74, 6534.
[26] Kawada, T.; Asano, R.; Makino, K.; Sakuno, T. J. Wood. Sci. 2002, 48, 512.
Outlines

/