A Benzothiazole-Based Ratiometric Fluorescent Probe for Highly Selective Detection of Homocysteine and Its Bioimaging Application

  • Shen Youming ,
  • Gu Biao ,
  • Liu Xin ,
  • Tang Yucai ,
  • Li Haitao
Expand
  • a Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan University of Arts and Science, Changde, Hunan 415000;
    b College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, Hunan 421008;
    c College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081

Received date: 2020-04-06

  Revised date: 2020-05-07

  Online published: 2020-05-28

Supported by

Project supported by the National Natural Science Foundation of China (No. 21907026), the Hunan Provincial Natural Science Foundation of China (No. 2019JJ50009), the Scientific Research Fund of Hunan Provincial Education Department (No. 18B369) and the Environmental Monitoring and Evaluation Center of Hengyang Normal University (No. KYJG1803).

Abstract

Elevated homocysteine (Hcy) has been considered as a risk factor for vascular and renal diseases. Therefore, the development of Hcy-specific fluorescent probes, especially ratiometric fluorescent probes is of great importance. In the present study, a highly Hcy selective ratiometric fluorescent probe 3-(benzo[d]thiazol-2-yl)-2-hydroxy-5-methyl-benzaldehyde (BA), based on an ortho-hydroxy aldehyde functionalized benzothiazole, is presented. The probe responded selectively to Hcy over other tested species including Cys and GSH with ratiometric fluorescence changes. The probe possessed itself green fluorescence (λem=544 nm). Addition of Hcy to the BA solution triggered remarkable blue fluorescence (λem=478 nm). The fluorescence intensity ratios (I478 nm/I544 nm) were linearly related to the amounts of Hcy from 0 to 1.0 mmol/L with a detection limit of 1.6 μmol/L. The probe BA possessed low cytotoxicity and desirable cell permeability, and could be employed for the ratiometric imaging of Hcy in living cells, suggesting its potential applications in biological systems. Moreover, the sensing mechanism of BA for Hcy was verified by NMR, HRMS and time-dependent density function theory calculations.

Cite this article

Shen Youming , Gu Biao , Liu Xin , Tang Yucai , Li Haitao . A Benzothiazole-Based Ratiometric Fluorescent Probe for Highly Selective Detection of Homocysteine and Its Bioimaging Application[J]. Chinese Journal of Organic Chemistry, 2020 , 40(8) : 2442 -2449 . DOI: 10.6023/cjoc202004009

References

[1] Bu, L.; Chen, J.; Wei, X.; Li, X.; Agren H.; Xie, Y. Dyes Pigm. 2017, 136, 724.
[2] Yang, X.; Guo, Y.; Strongin, R. M. Angew. Chem., Int. Ed. 2011, 50, 10690.
[3] Lee, P. T.; Lowinsohn, D.; Compton, R. G. Analyst 2014, 139, 3755.
[4] Espina, J. G.; Montes-Bayón, M.; Blanco-González, E.; Sanz-Medel, A. Anal. Bioanal. Chem. 2015, 407, 7899.
[5] Huo, F. J.; Sun, Y. Q.; Su, J.; Chao, J. B.; Zhi, H. J.; Yin, C. X. Org. Lett. 2009, 11, 4918.
[6] Inoue, T.; Kirchhoff, J. R. Anal. Chem. 2002, 74, 1349.
[7] Kamińska, A.; Olejarz, P.; Borowczyk, K.; Głowacki, R.; Chwatko, G. J. Sep. Sci. 2018, 41, 3241.
[8] Jiao, X.; Li, Y.; Niu, J.; Xie, X.; Wang, X.; Tang, B. Anal. Chem. 2018, 90, 533.
[9] Wang, R. X.; Lai, X. J.; Qiu, G. S.; Liu, J. B. Chin. J. Org. Chem. 2019, 39, 952(in Chinese). (王瑞祥, 赖晓静, 邱观音生, 刘晋彪, 有机化学, 2019, 39, 952.)
[10] Yue, Y.; Huo, F.; Li, X.; Wen, Y.; Yi, T.; Salamanca, J.; Escobedo, J. O.; Strongin, R. M.; Yin, C. Org. Lett. 2017, 19, 82.
[11] Yue, P.; Yang, X.; Ning, P.; Xi, X.; Yu, H.; Feng, Y.; Shao, R.; Meng, X. Talanta 2018, 178, 24.
[12] Liang, Q.; Zhang, Y. J.; Zeng, M.; Guan, L.; Xiao, Y. Y.; Xiao, F. Toxicol. Res. 2018, 7, 521.
[13] Cheng, T.; Huang, W.; Gao, D.; Yang, Z.; Zhang, C.; Zhang, H.; Zhang, J.; Li, H.; Yang, X. F. Anal. Chem. 2019, 91, 10894.
[14] Cheng, X. H.; Xu, K.; Qu, S. H.; Ruan, Z. J. Chin. J. Org. Chem. 2019, 39, 2835(in Chinese). (程晓红, 徐可, 屈少华, 阮志军, 有机化学, 2019, 39, 2835.)
[15] Zhou, T. T.; Yang, Y. T.; Zhou, K. Y.; Xu, W. Z.; Li, W. Chin. J. Org. Chem. 2019, 39, 3498(in Chinese). (周婷婷, 杨瑜涛, 周柯岩, 胥稳智, 李玮, 有机化学, 2019, 39, 3498.)
[16] Yan, P. P.; Wang, T.; Zhang, D.; Ma, X. X. Chin. J. Org. Chem. 2019, 39, 916(in Chinese). (闫沛沛, 王婷, 张丹, 马晓雪, 有机化学, 2019, 39, 916.)
[17] Qiu, X.; Jiao, X.; Liu, C.; Zheng, D.; Huang, K.; Wang, Q.; He, S.; Zhao, L.; Zeng, X. Dyes Pigm. 2017, 140, 212.
[18] Lee, H. Y.; Choi, Y. P.; Kim, S.; Yoon, T.; Guo, Z.; Lee, S.; Swamy, K. M. K.; Kim, G.; Lee, J. Y.; Shin, I.; Yoon, J. Chem. Commun. 2014, 50, 6967.
[19] Barve, A.; Lowry, M.; Escobedo, J. O.; Huynh, K. T.; Hakuna, L.; Strongin, R. M. Chem. Commun. 2014, 50, 8219.
[20] Zhang, Y. J.; Ma, Y.; Liang, N. J.; Liang, Y. H.; Lu, C.; Xiao, F. Ecotoxicol. Environ. Saf. 2019, 186, 109749.
[21] Zhao, N.; Gong, Q.; Zhang, R. X.; Yang, J.; Huang, Z. Y.; Li, N.; Tang, B. Z. J. Mater. Chem. C 2015, 3, 8397.
[22] Sedgwick, A. C.; Wu, L.; Han, H. H.; Bull, S. D.; He, X. P.; James, T. D.; Sessler, J. L.; Tang, B. Z.; Tian, H.; Yoon, J. Chem. Soc. Rev. 2018, 47, 8842.
[23] Meng, X.; Ye, W.; Wang, S.; Feng, Y.; Chen, M.; Zhu, M.; Guo, Q. Sens. Actuators, B 2014, 201, 520.
[24] Lee, K. S.; Kim, T. K.; Lee, J. H.; Kim, H. J.; Hong, J. I. Chem. Commun. 2008, 6173.
[25] Gu, B.; Huang, L.; Su, W.; Duan, X.; Li, H.; Yao, S. Anal. Chim. Acta 2017, 954, 97.
[26] Chang, I. J.; Hwang, K. S.; Chang, S. K. Dyes Pigm. 2017, 137, 69.
[27] Yang, L.; Su, Y.; Geng, Y.; Zhang, Y.; Ren, X.; He, L.; Song, X. ACS Sens. 2018, 3, 1863.
[28] Wang, Y. W.; Liu, S. B.; Ling, W. J.; Peng, Y. Chem. Commun. 2016, 52, 827.
[29] Huang, Z. J.; Ding, S. S.; Yu, D. H.; Huang, F. H.; Feng, G. Q. Chem. Commun. 2014, 50, 9185.
Outlines

/