ACCOUNT

Lewis-Base Boryl Radicals Enabled Borylation, Radical Catalysis and Reduction Reactions

  • Jin Jikang ,
  • Xia Huimin ,
  • Zhang Fenglian ,
  • Wang Yifeng
Expand
  • Department of Chemistry, University of Science and Technology of China, Hefei 230026

Received date: 2020-05-07

  Revised date: 2020-05-19

  Online published: 2020-05-29

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21672195, 21702201, 21971226) and the Fundamental Research Funds for the Central Universities (No. WK2060190082).

Abstract

Free radical reactions represent an efficient and significant tool to construct organic molecules by taking advantages of the high-efficiency, remarkable selectivity and good functional groups tolerance. Lewis-base boryl radicals are a class of species that possess unique structures and chemical reactivity, and a variety of synthetic applications have been developed. This account summarizes the research advances in this research field mainly contributed by our group. The results include Lewis-based boryl radicals enabled borylation reactions, Lewis-based boryl radicals-catalyzed new reactions, and Lewis-based boryl radicals promoted reduction reactions. These reactions feature mild reaction conditions, good functional groups compatibility, high yields, and excellent chemo-, regio-, and stereo-selectivities.

Cite this article

Jin Jikang , Xia Huimin , Zhang Fenglian , Wang Yifeng . Lewis-Base Boryl Radicals Enabled Borylation, Radical Catalysis and Reduction Reactions[J]. Chinese Journal of Organic Chemistry, 2020 , 40(8) : 2185 -2194 . DOI: 10.6023/cjoc202005017

References

[1] Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25.
[2] (a) Ueng, S.-H.; Makhlouf Brahmi, M.; Derat, É.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. J. Am. Chem. Soc. 2008, 130, 10082.
(b) Ueng, S.-H.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. Org. Lett. 2010, 12, 3002.
[3] Pan, X.; Lacôte, E.; Lalevée, J.; Curran, D. P. J. Am. Chem. Soc. 2012, 134, 5669.
[4] (a) Pan, X.; Lalevée, J.; Lacôte, E.; Curran, D. P. Adv. Synth. Catal. 2013, 355, 3522.
(b) Ueng, S.-H.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. Org. Biomol. Chem. 2011, 9, 3415.
[5] Kawamoto, T.; Geib, S. J.; Curran, D. P. J. Am. Chem. Soc. 2015, 137, 8617.
[6] Tehfe, M.-A.; Makhlouf Brahmi, M.; Fouassier, J.-P.; Curran, D. P.; Malacria, M.; Fensterbank, L.; Lacôte, E.; Lalevée, J. Macromolecules 2010, 43, 2261.
[7] Hall, D. G. Boronic Acids:Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed., Wiley-VCH, Weinheim, Germany, 2011.
[8] (a) Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179.
(b) Brown, H. C.; Singaram, B. Acc. Chem. Res. 1988, 21, 287.
(c) Brown, H. C.; Rao, B. C. S. J. Am. Chem. Soc. 1956, 78, 5694.
[9] (a) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508.
(b) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. J. Am. Chem. Soc. 1993, 115, 11018.
[10] (a) Wille, U. Chem. Rev. 2013, 113, 813.
(b) Li, C.; Zhu, C. Acta Chim. Sinica 2019, 77, 771(in Chinese). (李超忠, 朱晨, 化学学报, 2019, 77, 771.)
[11] (a) Friese, F. W.; Studer, A. Chem. Sci. 2019, 10, 8503.
(b) Taniguchi, T. Eur. J. Org. Chem. 2019, 2019, 6308.
(c) Zhang, F.-L.; Wang, Y.-F. Reactions through Radical Boryl Moieties in Science of Synthesis:Advances in Organoboron Chemistry towards Organic Synthesis, Eds.:Fernnádez, G., Thieme Verlag KG, Stuttgart, Germany, 2019, pp. 355~392.
(d) Yang, J.-M.; Li, Z.-Q.; Zhu, S.-F. Chin. J. Org. Chem. 2017, 37, 2481(in Chinese). (杨吉民, 李子奇, 朱守非, 有机化学, 2017, 37, 2481.)
(e) Curran, D. P.; Solovyev, A.; Makhlouf Brahmi, M.; Fensterbank, L.; Malacria, M.; Lacôte, E. Angew. Chem., Int. Ed. 2011, 50, 10294.
[12] Ren, S.-C.; Zhang, F.-L.; Qi, J.; Huang, Y.-S.; Xu, A.-Q.; Yan, H.-Y.; Wang, Y.-F. J. Am. Chem. Soc. 2017, 139, 6050.
[13] (a) Walton, J. C.; Brahmi, M. M.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Chu, Q.; Ueng, S.-H.; Solovyev, A.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 2350.
(b) Ueng, S.-H.; Solovyev, A.; Yuan, X.; Geib, S. J.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Newcomb, M.; Walton, J. C.; Curran, D. P. J. Am. Chem. Soc. 2009, 131, 11256.
[14] Solovyev, A.; Chu, Q.; Geib, S. J.; Fensterbank, L.; Malacria, M.; Lacôte, E.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 15072.
[15] Nerkar, S.; Curran, D. P. Org. Lett. 2015, 17, 3394.
[16] Watanabe, T.; Hirose, D.; Curran, D. P.; Taniguchi, T. Chem.-Eur. J. 2017, 23, 5404.
[17] (a) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014, 57, 5845.
(b) Luca, C.; Daniela, B. Curr. Med. Chem. 2006, 13, 65.
[18] (a) Zheng, Y.; Tice, C. M.; Singh, S. B. Bioorg. Med. Chem. Lett. 2014, 24, 3673.
(b) Aldeghi, M.; Malhotra, S.; Selwood, D. L.; Chan, A. W. E. Chem. Biol. Drug Des. 2014, 83, 450.
[19] (a) Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. J. Am. Chem. Soc. 2016, 138, 4338.
(b) Yamamoto, E.; Takenouchi, Y.; Ozaki, T.; Miya, T.; Ito, H. J. Am. Chem. Soc. 2014, 136, 16515.
(c) Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 1226.
(d) Lee, K.-s.; Zhugralin, A. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 7253.
(e) Bonet, A.; Gulyás, H.; Fernández, E. Angew. Chem., Int. Ed. 2010, 49, 5130.
(f) Feng, X.; Yun, J. Chem. Commun. 2009, 6577.
(g) Bonet, A.; Sole, C.; Gulyás, H.; Fernández, E. Chem. Asian J. 2011, 6, 1011.
[20] Qi, J.; Zhang, F.-L.; Huang, Y.-S.; Xu, A.-Q.; Ren, S.-C.; Yi, Z.-Y.; Wang, Y.-F. Org. Lett. 2018, 20, 2360.
[21] (a) Thomas, G. L.; Johannes, C. W. Curr. Opin. Chem. Biol. 2011, 15, 516.
(b) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.
(c) Oehlrich, D.; Prokopcova, H.; Gijsen, H. J. M. Bioorg. Med. Chem. Lett. 2014, 24, 2033.
(d) Edwards, P. D.; Albert, J. S.; Sylvester, M.; Aharony, D.; Andisik, D.; Callaghan, O.; Campbell, J. B.; Carr, R. A.; Chessari, G.; Congreve, M.; Frederickson, M.; Folmer, R. H. A.; Geschwindner, S.; Koether, G.; Kolmodin, K.; Krumrine, J.; Mauger, R. C.; Murray, C. W.; Olsson, L.-L.; Patel, S.; Spear, N.; Tian, G. J. Med. Chem. 2007, 50, 5912.
(e) Shankaran, K.; Donnelly, K. L.; Shah, S. K.; Guthikonda, R. N.; MacCoss, M.; Humes, J. L.; Pacholok, S. G.; Grant, S. K.; Kelly, T. M.; Wong, K. K. Bioorg. Med. Chem. Lett. 2004, 14, 4539.
(f) Kshirsagar, U. A. Org. Biomol. Chem. 2015, 13, 9336.
[22] Jin, J.-K.; Zhang, F.-L.; Zhao, Q.; Lu, J.-A.; Wang, Y.-F. Org. Lett. 2018, 20, 7558.
[23] (a) Demay, S.; Volant, F.; Knochel, P. Angew. Chem., Int. Ed. 2001, 40, 1235.
(b) Evans, D. A.; Fu, G. C.; Hoveyda, A. H. J. Am. Chem. Soc. 1992, 114, 6671.
[24] Zhou, N.; Yuan, X.-A.; Zhao, Y., Xie, J.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 3990.
[25] Shimoi, M.; Watanabe, T.; Maeda, K.; Curran, D. P.; Taniguchi, T. Angew. Chem., Int. Ed. 2018, 57, 9485.
[26] (a) Brauer, D. J.; Bürger, H.; Buchheim-Spiegel, S.; Pawelke, G. Eur. J. Inorg. Chem. 1999, 1999, 255.
(b) Bai, J.; Burke, L. D.; Shea, K. J. J. Am. Chem. Soc. 2007, 129, 4981.
(c) Caskey, S. R.; Stewart, M. H.; Johnson, M. J. A.; Kampf, J. W. Angew. Chem., Int. Ed. 2006, 45, 7422.
(d) Bell, N. J.; Cox, A. J.; Cameron, N. R.; Evans, J. S. O.; Marder, T. B.; Duin, M. A.; Elsevier, C. J.; Baucherel, X.; Tulloch, A. A. D.; Tooze, R. P. Chem. Commun. 2004, 1854.
(e) Ansorge, A.; Brauer, D. J.; Bürger, H.; Hagen, T.; Pawelke, G. Angew. Chem., Int. Ed. 1993, 32, 384.
(f) Denis, St. J. D.; He, Z.; Yudin, A. K. ACS Catal. 2015, 5, 5373.
(g) He, Z.; Zajdlik, A.; Yudin, A. K. Acc. Chem. Res. 2014, 47, 1029.
[27] (a) Kan, S. B. J.; Huang, X.; Gumulya, Y.; Chen, K.; Arnold, F. H. Nature 2017, 552, 132.
(b) Yang, J.-M.; Zhao, Y.-T.; Li, Z.-Q.; Gu, X.-S.; Zhu, S.-F.; Zhou, Q.-L. ACS Catal. 2018, 8, 7351.
(c) Cheng, Q.-Q.; Zhu, S.-F.; Zhang, Y.-Z.; Xie, X.-L.; Zhou, Q.-L. J. Am. Chem. Soc. 2013, 135, 14094.
(d) Allen, T. H.; Kawamoto, T.; Gardner, S.; Geib, S. J.; Curran, D. P. Org. Lett. 2017, 19, 3680.
(e) Li, X.; Curran, D. P. J. Am. Chem. Soc. 2013, 135, 12076.
(f) Corless, V. B.; Holownia, A.; Foy, H.; Mendoza-Sanchez, R.; Adachi, S.; Dudding, T.; Yudin, A. K. Org. Lett. 2018, 20, 5300.
(g) Lv, W.-X.; Zeng, Y.-F.; Li, Q.; Chen, Y.; Tan, D.-H.; Yang, L.; Wang, H. Angew. Chem., Int. Ed. 2016, 55, 10069.
(h) Li, J.; Burke, M. D. J. Am. Chem. Soc. 2011, 133, 13774.
(i) He, Z.; Yudin, A. K. J. Am. Chem. Soc. 2011, 133, 13770.
[28] Ren, S.-C.; Zhang, F.-L.; Xu, A.-Q.; Yang, Y.; Zheng, M.; Zhou, X.; Fu, Y.; Wang, Y.-F. Nat. Commun. 2019, 10, 1934.
[29] Liu, L.; Chen, Q.; Wu, Y.-D.; Li, C. J. Org. Chem. 2005, 70, 1539.
[30] Zhu, C.; Dong, J.; Liu, X.; Gao, L.; Zhao, Y.; Xie, J.; Li, S.; Zhu, C. Angew. Chem., Int. Ed. 2020, 59, 12817.
[31] Huang, Y.-S.; Wang, J.; Zheng, W.-X.; Zhang, F.-L.; Yu, Y.-J.; Zheng, M.; Zhou, X.; Wang, Y.-F. Chem. Commun. 2019, 55, 11904.
[32] (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(b) Hagmann, W. K. J. Med. Chem., 2008, 51, 4359.
(c) Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Chem. Commun. 2007, 1003.
(d) O'Hagan, D.; S. Rzepa, H.; Chem. Commun. 1997, 645.
[33] Hiyama, T.; Yamamoto, H. In Organofluorine Compounds:Chemistry and Applications, Eds.:Hiyama T.; Yamamoto, H., Springer Berlin Heidelberg, Berlin, 2000, pp. 25~76.
[34] Jin, J.-K.; Zheng, W.-X.; Xia, H.-M.; Zhang, F.-L.; Wang, Y.-F. Org. Lett. 2019, 21, 8414.
[35] (a) Couve-Bonnaire, S.; Cahard, D.; Pannecoucke, X. Org. Biomol. Chem. 2007, 5, 1151.
(b) Vedejs, E.; Fields, S. C.; Hayashi, R.; Hitchcock, S. R.; Powell, D. R.; Schrimpf, M. R. J. Am. Chem. Soc. 1999, 121, 2460.
(c) Daubresse, N.; Chupeau, Y.; Francesch, C.; Lapierre, C.; Pollet, B.; Rolando, C. Chem. Commun. 1997, 1489.
(d) Van der Veken, P.; Senten, K.; Kertèsz, I.; De Meester, I.; Lambeir, A.-M.; Maes, M.-B.; Scharpé, S.; Haemers, A.; Augustyns, K. J. Med. Chem. 2005, 48, 1768.
[36] Liu, X.; Lin, E.-E.; Chen, G.; Li, J.-L.; Liu, P.; Wang, H. Org. Lett. 2019, 21, 8454.
[37] Qi, J.; Zhang, F.-L.; Jin, J.-K.; Zhao, Q.; Li, B.; Liu, L.-X.; Wang, Y.-F. Angew. Chem., Int. Ed. 2020, 59, 12876.
[38] Xia, P.-J.; Song, D.; Ye, Z.-P.; Hu, Y.-Z.; Xiao, J.-A.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H. Angew. Chem., Int. Ed. 2020, 59, 6706.
[39] Dai, W.; Geib, S. J.; Curran, D. P. J. Am. Chem. Soc. 2020, 142, 6261.
[40] (a) Feldman, K. S.; Romanelli, A. L.; Ruckle, R. E.; Miller, R. F. J. Am. Chem. Soc. 1988, 110, 3300.
(b) Feldman, K. S.; Simpson, R. E. J. Am. Chem. Soc. 1989, 111, 4878.
(c) Miura, K.; Fugami, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1988, 29, 5135.
(d) Feldman, K. S.; Romanelli, A. L.; Ruckle, R. E.; Jean, G. J. Org. Chem. 1992, 57, 100.
(e) Feldman, K. S.; Berven, H. M.; Weinreb, P. H. J. Am. Chem. Soc. 1993, 115, 11364.
(f) Journet, M.; Rouillard, A.; Cai, D.; Larsen, R. D. J. Org. Chem. 1997, 62, 8630.
(g) Feldman, K. S.; Fisher, T. E. Tetrahedron 1989, 45, 2969.
(h) Kim, S.; Lee, S. Tetrahedron Lett. 1991, 32, 6575.
(i) Zhang, H.; Jeon, K. O.; Hay, E. B.; Geib, S. J.; Curran, D. P.; LaPorte, M. G. Org. Lett. 2014, 16, 94.
(k) Zhang, H.; Curran, D. P. J. Am. Chem. Soc. 2011, 133, 10376.
[41] Hashimoto, T.; Kawamata, Y.; Maruoka, K. Nat. Chem. 2014, 6, 702.
[42] (a) Zhao, Q.-Q.; Zhou, X.-S.; Xu, S.-H.; Wu, Y.-L.; Xiao, W.-J.; Chen, J.-R. Org. Lett. 2020, 22, 2470.
(b) Zhao, Q.-Q.; Chen J.; Zhou, X.-S.; Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem.-Eur. J. 2019, 25, 8024.
(c) Yu, X.-Y.; Zhao Q.-Q.; Chen, J.; Xiao, W.-J.; Chen, J.-R. Acc. Chem. Res. 2020, 53, 1066.
[43] Xu, A.-Q.; Zhang, F.-L.; Ye, T.; Yu, Z.-X.; Wang, Y.-F. CCS Chem. 2019, 1, 504.
[44] (a) Kuivila, H. G. Acc. Chem. Res. 1968, 1, 299.
(b) Neumann, W. P. Synthesis 1987, 665.
[45] (a) Boyer, I. J. Toxicology 1989, 55, 253.
(b) Ingham, R. K., Rosenberg, S. D., Gilman, H. Chem. Rev. 1960, 60, 459.
[46] (a) Hurd, R. N.; DeLaMater, G. Chem. Rev. 1961, 61, 45.
(b) Guo, W.-S.; Wen, L.-R.; Li, M. Org. Biomol. Chem. 2015, 13, 1942.
(c) Jagodziński, T. S. Chem. Rev. 2003, 103, 197.
[47] Wertheim, E. J. Am. Chem. Soc. 1935, 57, 545.
[48] Yu, Y.-J.; Zhang, F.-L.; Cheng, J.; Hei, J.-H.; Deng, W.-T.; Wang, Y.-F. Org. Lett. 2018, 20, 24.
[49] Du, W.; Curran, D. P. Org. Lett. 2003, 5, 1765.
[50] (a) Wang, J.; Qin, T., Chen, T.-G.; Wimmer, L.; Edwards, J. T.; Cornella, J.; Vokits, B.; Shaw, S. A.; Baran, P. S. Angew. Chem., Int. Ed. 2016, 55, 9676.
(b) Toriyama, F.; Cornella, J.; Wimmer, L.; Chen, T.-G.; Dixon, D. D; Creech, G.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 11132.
(c) Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. Science 2016, 352, 801.
(d) Qin, T.; Malins, L. R.; Edwards, J. T.; Merchant, R. R.; Novak, A. J. E.; Zhong, J. Z.; Mills, R. B.; Yan, M.; Yuan, C.; Eastgate, M. D.; Baran, P. S. Angew. Chem., Int. Ed. 2017, 56, 260.
(e) Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A. M.; Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.; Ackerman, L. K. G.; Weix, D. J. J. Am. Chem. Soc. 2016, 138, 5016.
(f) Lackner, G. L.; Quasdorf, K. W.; Overman, L. E. J. Am. Chem. Soc. 2013, 135, 15342.
(g) Lackner, G. L.; Quasdorf, K. W.; Pratsch, G.; Overman, L. E. J. Org. Chem. 2015, 80, 6012.
(h) Slutskyy, Y.; Overman, L. E. Org. Lett. 2016, 18, 2564.
(i) Huang, L.; Olivares, A. M.; Weix, D. J. Angew. Chem., Int. Ed. 2017, 56, 11901.
(j) Tlahuext-Aca, A.; Garza-Sanchez, R. A.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 3708.
(k) Kachkovskyi, G.; Faderl, C.; Reiser, O. Adv. Synth. Catal. 2013, 355, 2240.
(l) Jiang, M.; Yang, H.; Fu, H. Org. Lett. 2016, 18, 1968.
(m) Candish, L.; Teders, M.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 7440.
(n) Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Science 2017, 357, 283.
(o) Murarka, S. Adv. Synth. Catal. 2018, 360, 1735.
[51] Lu, X.; Xiao, B.; Liu, L.; Fu, Y. Chem. Eur. J. 2016, 22, 11161.
[52] Jin J.-K.; Zhang F.-L.; Wang Y.-F. Acta Chim. Sinica 2019, 77, 889(in Chinese). (靳继康, 张凤莲, 汪义丰, 化学学报, 2019, 77, 889.)
[53] Gao, L.; Wang, G.; Cao, J.; Yuan, D.; Xu, C.; Guo, X.; Li, S. Chem. Commun. 2018, 54, 11534.
Outlines

/