Recent Progress in the Reactions of Aurone-Derived Azadienes

  • Yu Shuyan ,
  • Gao Lihong ,
  • Lan Hongbing ,
  • Qian Hengyu ,
  • Yin Zhigang ,
  • Shang Yongjia
Expand
  • a Material and Chemical Engineering College, Zhengzhou University of Light Industry, Zhengzhou 450002;
    b Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000

Received date: 2020-04-23

  Revised date: 2020-05-16

  Online published: 2020-06-01

Supported by

Project supported by the National Natural Science Foundation of China (No. 21602207) and the Foundation of Henan Educational Committee (No. 17A150022).

Abstract

Owing to the important physiological and pharmacological activities of benzofuran compounds, the exploration for efficient synthesis methods is of great value and wide application. Aurone-derived azadienes have been identified to be effective reactants in the field of organic synthesis owing to the driving force of aromatization. A large number of reactions based on 1,4-conjugate addition and tandem cyclization have been reported, which exhibited great advantages in the construction of heterocycles with benzofuran skeletons. In this paper, the recent progress in the chemical transformations of aurone-derived azadienens is reviewed, with emphasis on the employed catalytic system and the plausible mechanism of some reactions.

Cite this article

Yu Shuyan , Gao Lihong , Lan Hongbing , Qian Hengyu , Yin Zhigang , Shang Yongjia . Recent Progress in the Reactions of Aurone-Derived Azadienes[J]. Chinese Journal of Organic Chemistry, 2020 , 40(9) : 2714 -2724 . DOI: 10.6023/cjoc202004034

References

[1] Galal, S. A.; El-All, A. S. A.; Abdallah, M. M.; El-Diwani, H. I. Bioorg. Med. Chem. Lett. 2009, 19, 2420.
(b) Shamsuzzaman, H. K. Eur. J. Med. Chem. 2015, 97, 483.
(c) Radadiya, A.; Shah, A. Eur. J. Med. Chem. 2015, 97, 356.
(d) Hiremathad, A.; Patil, M. R.; Chethana, K. R.; Chand, K.; Santos, M. A.; Keri, R. S. RSC Adv. 2015, 5, 96809.
[2] (a) Pang, J. Y.; Xu, Z. L. Chin. J. Org. Chem. 2005, 25, 25(in Chinese). (庞冀燕, 许遵乐, 有机化学, 2005, 25, 25.)
(b) Qi, J. P. Guangdong Chem. Indus. 2010, 6, 26(in Chinese). (亓金萍, 广东化工, 2010, 6, 26.)
(c) Yan, R. L. M.S. Thesis, Lanzhou University, Lanzhou, 2006 (in Chinese). (严汝龙, 硕士论文, 兰州大学, 兰州, 2006.)
[3] Gu, Z.; Zhou, J.; Jiang, G. F.; Zhou, Y. G. Org. Chem. Front. 2018, 5, 1148.
[4] Logusch, E. W.; Walker, D. M.; McDonaldand, J. F.; Franz, J. E. Biochemistry 1990, 29, 366.
[5] Dunbar, K. L.; Scharf, D. H.; Litomska, A.; Hertweck, C. Chem. Rev. 2017, 117, 5521.
[6] Zhou, Y. G.; Jiang, G. F.; Xie, J. J.; Gu, Z. Asian J. Org. Chem. 2018, 7, 1561.
[7] Roethle, P. A.; Trauner, D. Nat. Prod. Rep. 2008, 25, 298.
[8] Cui, H. L.; Huang, J. R.; Lei, J.; Wang, Z. F.; Chen, S.; Wu, L.; Chen, C. Y. Org. Lett. 2010, 12, 720.
[9] Lin, W.; Lin, X.; Cheng, Y. Y.; Chang, X. Y.; Zhou, S.; Li, P. F.; Li. W. J. Org. Chem. Front. 2019, 6, 2452.
[10] Li. W. J.; Lin, W.; Zhang, C.; Xu, W.; Cheng, Y. Y.; Li, P. F. Adv. Synth. Catal. 2019, 361, 476.
[11] Nair, V.; Thomas, S.; Mathew, S. C.; Abhilash, K. G. Tetrahedron 2006, 62, 6731.
[12] Xie, H. P.; Wu, B.; Wang, X. W.; Zhou, Y. G. Chin. J. Catal. 2019, 40, 1566.
[13] (a) Terada, M. Chem. Commun. 2008, 35, 4097.
(b) Terada, M. Synthesis 2010, 1929.
(c) Zamfir, A.; Schenker, S.; Freund, M.; Tsogoeva, S. B. Org. Biomol. Chem. 2010, 8, 5262.
[14] Wang, C. J.; Yang, Q. Q.; Wang, M. X.; Shang, Y. H.; Tong, X. Y.; Deng, Y. H.; Shao, Z. H. Org. Chem. Front. 2020, 7, 609.
[15] (a) Saracoglu, N. Top. Heterocycl. Chem. 2007, 11, 145.
(b) Kong, D.; Xue, T.; Guo, B.; Cheng, J.; Liu, S.; Wei, J.; Lu, Z.; Liu, H.; Gong, G.; Lan, T.; Hu, W.; Yang, Y. J. Med. Chem. 2019, 62, 3088.
[16] Wang, C. S.; Li, T. Z.; Chen, Y. C.; Zhou, J.; Mei, G. J.; Shi, F. J. Org. Chem. 2019, 84, 3214.
[17] (a) Khan, I. A.; Kulkarni, M. V.; Gopal, M.; Shahabuddin, M. S.; Sun, C. M. Bioorg. Med. Chem. Lett. 2005, 15, 3584.
(b) Voigt, B.; Meijer, L.; Lozach, O.; Schächtele, C.; Totzke, F.; Hilgeroth, A. Bioorg. Med. Chem. Lett. 2005, 15, 823.
[18] Zeng, R.; Shan, C. Y.; Liu, M.; Jiang, K.; Ye, Y.; Liu, T. Y.; Chen, Y. C. Org. Lett. 2019, 21, 2312.
[19] Rong, Z. Q.; Wang, M.; Hao, C.; Chow, E.; Zhao, Y. Chem.-Eur. J. 2016, 22, 9483.
[20] Gu, Z.; Wu, B.; Jiang, G. F.; Zhou, Y. G. Chin. J. Chem. 2018, 36, 1130.
[21] Li, X. P.; Yan, J. Z.; Qin, J. L.; Lin, S. L.; Chen, W. W.; Zhan, R. T.; Huang, H. C. J. Org. Chem. 2019, 84, 8035.
[22] Chen, J. L.; Jia, P. H.; Huang, Y. Org. Lett. 2018, 20, 6715.
[23] Allen, A. D.; Tidwell, T. T. Chem. Rev. 2013, 113, 7287.
[24] Bernardim, B.; Hardman-Baldwin, A. M.; Burtoloso, A. C. B. RSC Adv. 2015, 5, 13311.
[25] Tan, T.; Zhang, Z. J.; Zhang, Y. C.; Song, J. Org. Lett. 2019, 21, 7897.
[26] Xie, H. P.; Sun, L.; Wu, B.; Zhou, Y. G. J. Org. Chem. 2019, 84, 15498.
[27] (a) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry, Higher Education Press, Beijing, 2009.
(b) Tomasi, S.; Renault, J.; Martin, B.; Duhieu, S.; Cerec, V.; LeRoch, M.; Uriac, P.; Delcros, J. G. J. Med. Chem. 2010, 53, 7647.
(c) Freidinger, R. M. J. Med. Chem. 2003, 46, 5553.
(d) Pegoraro, S.; Lang, M.; Dreker, T.; Kraus, J.; Hamm, S.; Meere, C.; Feurle, J.; Tasler, S.; Prütting, S.; Kura, Z.; Visan, V.; Grissmer, S. Bioorg. Med. Chem. Lett. 2009, 19, 2299.
[28] (a) Xie, P.; Huang, Y. Org. Biomol. Chem. 2015, 13, 8578.
(b) Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
(c) Zhao, Q. Y.; Lian, Z.; Wei, Y.; Shi, M. Chem. Commun. 2012, 48, 1724.
(d) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
[29] Chen, J. L.; Huang, Y. Org. Lett. 2017, 19, 5609.
[30] (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606.
(b) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485.
(c) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511.
(d) Grossmann, D. A.; Enders, D. Angew. Chem.. Int. Ed. 2012, 51, 314.
[31] Gao, Z. H.; Chen, K. Q.; Zhang, Y.; Kong, L. M.; Li, Y.; Ye, S. J. Org. Chem. 2018, 83, 15225.
[32] Chen, K. Q.; Gao, Z. H.; Ye, S. Org. Chem. Front. 2019, 6, 405.
[33] (a) Trost, B. M. Angew. Chem.. Int. Ed. 1986, 25, 1.
(b) Trost, B. M. Pure Appl. Chem. 1988, 60, 1615.
[34]
[33] Shintani, R.; Park, S.; Duan, W. L.; Hayashi, T. Angew. Chem.. Int. Ed. 2007, 46, 5901.
[35] Trost, B. M.; Zuo, Z. J. Angew. Chem.. Int. Ed. 2020, 59, 1243.
[36] (a) Hussain, A.; Yousuf, S. K.; Mukherjee, D. RSC Adv. 2014, 4, 43241.
(b) Faulkner, D. J. Nat. Prod. Rep. 1984, 1, 251.
(c) Mallinson, J.; Collins, I. Future Med. Chem. 2012, 4, 1409.
(d) Brown, H. C.; Fletcher, R. S.; Johannesen, R. B. J. Am. Chem. Soc. 1951, 73, 212.
(e) Prelog, V. Pure Appl. Chem. 1963, 6, 545.
[37] Ni, H. Z.; Tang, X. D.; Zheng, W. R.; Yao, W. J.; Ullah, N.; Lu, Y. X. Angew. Chem.. Int. Ed. 2017, 56, 14222.
[38] (a) Evans, A. E.; Farber, S.; Brunet, S.; Mariano, P. J. Cancer 1963, 16, 1302.
(b) Armstrong, J. G.; Dyke, R. W.; Fouts, P. J. Science 1964, 143, 703.
(c) Shimokawa, T.; Kinjo, J.; Yamahara, J.; Yamasaki, M.; Nohara, T. Chem. Pharm. Bull. 1985, 33, 3545.
[39] Yang, L. C.; Rong, Z. Q.; Wang, Y. N.; Tan, Z. Y.; Wang, M.; Zhao, Y. Angew. Chem.. Int. Ed. 2017, 56, 2927.
[40] Rong, Z. Q.; Yang, L. C.; Liu, S.; Yu, Z. Y.; Wang, Y. N.; Tan, Z. Y.; Huang, R. Z.; Lan, Y.; Zhao, Y. J. Am. Chem. Soc. 2017, 139, 15304.
[41] Wang, Y. N.; Yang, L. C.; Rong, Z. Q.; Liu, T. L.; Liu, R. Y.; Zhao, Y. Angew. Chem.. Int. Ed. 2018, 57, 1596.
[42] (a) Lee, S. H.; Seo, H. J.; Lee, S. H.; Jung, M. E.; Park, J. H.; Park, H. J.; Yoo, J.; Yun, H.; Na, J.; Kang, S. Y.; Song, K. S.; Kim, M.; Chang, C. H.; Kim, J.; Lee, J. J. Med. Chem. 2008, 51, 7216.
(b) Bilich, A.; Winther, M. D. Chem. Abstr. 2008, 149, 556638.
(c) Barnes-Seeman, D.; Jain, M.; Bell, L.; Ferreira, S.; Cohen, S.; Chen, X. H.; Amin, J.; Snodgrass, B.; Hatsis, P. ACS Med. Chem. Lett. 2013, 4, 514.
(d) Bezençon, O.; Heidmann, B.; Siegrist, R.; Stamm, S.; Richard, S.; Pozzi, D.; Corminboeuf, O.; Roch, C.; Kessler, M.; Ertel, E. A.; Reymond, I.; Pfeifer, T.; de Kanter, R.; Toeroek-Schafroth, M.; Moccia, L. G.; Mawet, J.; Moon, R.; Rey, M.; Capeleto, B.; Fournier, E. J. Med. Chem. 2017, 60, 9769.
[43] Bos, M.; Poisson, T.; Pannecoucke, X.; Charette, A. B.; Jubault, P. Eur. J. Chem. 2017, 23, 495.
[44] Chen, T.; Zhang, Y.; Fu, Z. Q.; Huang, W. Asian J. Org. Chem. 2019, 8, 2175.
[45] Marques, A. S.; Duhail, T.; Marrot, J.; Chataigner, I.; Coeffard,V.; Vincent, G.; Moreau, X. Angew. Chem.. Int. Ed. 2019, 58, 9969.
[46] Qi, J. F.; Tang, H. B.; Chen, C. W.; Cui, S. L.; Xu, G. Org. Chem. Front. 2019, 6, 2760.
Outlines

/