Recent Progress on Quinone Imine Ketals: Synthesis and Applications

  • Liu Teng
Expand
  • College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011

Received date: 2020-02-25

  Revised date: 2020-04-22

  Online published: 2020-06-10

Supported by

Project supported by the Program for the Application Fundamental Research of Yunnan Province (No. 2018FB019), the Opening Foundation of Key Laboratory of Natural Resources Pharmaceutical Chemistry, Ministry of Education, Yunnan University and the Innovative Training Program for College Students (Nos. 201910684008, 201910684027).

Abstract

In recent years, quinone imine ketals (QIKs) have been used as excellent organic synthons to the construction of complex organic molecules due to containing diverse functional groups (C=N, C=C and ketal etc.). Exploring the site-selectivity (chemo-, regio- and stereo-selectivity) of QIKs is not only a very significant research topic, but also a challenging research work. The preparation methods of QIKs and its applications in organic synthesis are reviewed according to the recent progress.

Cite this article

Liu Teng . Recent Progress on Quinone Imine Ketals: Synthesis and Applications[J]. Chinese Journal of Organic Chemistry, 2020 , 40(9) : 2678 -2691 . DOI: 10.6023/cjoc202002033

References

[1] (a) Milan, M.; Salamone, M.; Costas, M.; Bietti, M. Acc. Chem. Res. 2018, 51, 1984.
(b) Li, J.; Zhang, Z.; Wu, L.; Zhang, W.; Chen, P.; Lin, Z.; Liu, G. Nature 2019, 574, 516.
(c) Lv, J.; Chen, X.; Xue, X.-S.; Zhao, B.; Liang, Y.; Wang, M.; Jin, L.; Yuan, Y.; Han, Y.; Zhao, Y.; Lu, Y.; Zhao, J.; Sun, W.-Y.; Houk, K. N.; Shi, Z. Nature 2019, 575, 336.
[2] (a) Chou, C.-T.; Swenton, J. S. J. Am. Chem. Soc. 1987, 109, 6898.
(b) Swenton, J. S.; Bonke, B. R.; Chen, C.-P.; Chou, C.-T. J. Org. Chem. 1989, 54, 51.
(c) Swenton, J. S.; Shih, C.; Chen, C.-P.; Chou, C.-T. J. Org. Chem. 1990, 55, 2019.
(d) Swenton, J. S.; Bonke, B. R.; Clark, W. M.; Chen, C.-P.; Martin, K. V. J. Org. Chem. 1990, 55, 2027.
(e) Dalidowicz, P.; Swenton, J. S. J. Org. Chem. 1993, 58, 4802.
[3] (a) Kerr, M. A. Synlett 1995, 1165.
(b) Banfield, S. C.; England, D. B.; Kerr, M. A. Org. Lett. 2001, 3, 3325.
(c) Banfield, S. C.; Kerr, M. A. Can. J. Chem. 2004, 82, 131.
[4] Chuang, K. V.; Navarro, R.; Reisman, S. E. Chem. Sci. 2011, 2, 1086.
[5] (a) Dohi, T.; Hu, Y.; Kamitanaka, T.; Washimi, N.; Kita, Y. Org. Lett. 2011, 13, 4814.
(b) Hu, Y.; Kamitanaka, T.; Mishima, Y.; Dohi, T.; Kita, Y. J. Org. Chem. 2013, 78, 5530.
[6] Wang, L.; Fan, R. Org. Lett. 2012, 14, 3596.
[7] Shu, C.; Liao, L.-H.; Liao, Y.-J.; Hu, X.-Y.; Zhang, Y.-H.; Yuan, W.-C.; Zhang, X.-M. Eur. J. Org. Chem. 2014, 21, 4467.
[8] Jiang, F.; Zhang, Y.-C.; Sun, S.-B.; Zhou, L.-J.; Shi, F. Adv. Synth. Catal. 2015, 357, 1283.
[9] Liao, L.-H.; Zhang, M.-M.; Liao, Y.-J.; Yuan, W.-C.; Zhang, X.-M. Synlett 2015, 26, 1720.
[10] Liu, L.; Chen, K.; Wu, W.-Z.; Wang, P.-F.; Song, H.-Y.; Sun, H.; Wen, X.; Xu, Q.-L. Org. Lett. 2017, 19, 3823.
[11] Liu, T.; Liu, J.; Shen, X.; Xu, J.; Nian, B.; He, N.; Zeng, S.; Cheng, F. Synthesis 2019, 51, 1365.
[12] Halder, P.; Humne, V. T.; Mhaske, S. B. J. Org. Chem. 2019, 84, 1372.
[13] Liu, T.; Li, Y.; Cheng, F.; Shen, X.; Liu, J.; Lin, J. Green Chem. 2019, 21, 3536.
[14] Li, X.; Li, L.; Wang, W.; He, Q.; Fan, R. Org. Lett. 2020, 22, 823.
[15] Hashimoto, T.; Nakatsu, H.; Takiguchi, Y.; Maruoka, K. J. Am. Chem. Soc. 2013, 135, 16010.
[16] Zhang, Y.-C.; Zhao, J.-J.; Jiang, F.; Sun, S.-B.; Shi, F. Angew. Chem., Int. Ed. 2014, 53, 13912.
[17] Zhang, Y.-C.; Jiang, F.; Wang, S.-L.; Shi, F.; Tu, S.-J. J. Org. Chem. 2014, 79, 6143.
[18] Hashimoto, T.; Nakatsu, H.; Maruoka, K. Angew. Chem., Int. Ed. 2015, 54, 4617.
[19] Gu, J.; Xiao, B.-X.; Chen, Y.-R.; Du, W.; Chen, Y.-C. Adv. Synth. Catal. 2016, 358, 296.
[20] Ma, C.; Zhang, T.; Zhou, J.-Y.; Mei, G.-J.; Shi, F. Chem. Commun. 2017, 53, 12124.
Outlines

/