Visible-Light Photocatalytic Remote Halo-difluoroalkylation of Thioalkynes

  • Zhu Haiqian ,
  • Shang Tianbo ,
  • Lu Zenghui ,
  • Luo Fang ,
  • Zhu Gangguo
Expand
  • a Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004;
    b Wanzhou Ecological Environment Monitoring Station, Chongqing 404000

Received date: 2020-05-24

  Revised date: 2020-06-06

  Online published: 2020-06-13

Supported by

Project supported by the National Natural Science Foundation of China (No. 21672191), the Natural Science Foundation of Zhejiang Province (No. LZ20B020002) and the Education Department of Zhejiang Province (No. Y201942955).

Abstract

Fluoroalkylated alkenes are of significant importance in life sciences and functional materials. The fluoroalkylation of alkynes offers an efficient method for the synthesis of functionalized fluoroalkylated alkenes. However, the current methods are often limited to 1,2-difunctionalization, while the remote fluoroalkylative difunctionalization of alkynes has been rarely developed. Herein, a novel visible-light-induced remote halo-difluoroalkylation of thioalkynes is realized with difluoroalkyl halides as the radical source, forming distally halogenated (Z)-fluoroalkylated alkenes in moderate to high yields with excellent regio-, stereo-, and site-selectivity. The notable features of this reaction include the mild reaction conditions, broad substrate scope, concurrent formation of three new chemical bonds, and a thermodynamically less stable (Z)-alkene, thus enabling it a highly attractive method for organic synthesis. It represents a new advance on the direct C-H bond halogenation. Preliminary mechanistic studies indicate a cascade radical process involving the heteroatom-induced β-fluoroalkylation of C-C triple bonds, intramolecular 1,5-hydrogen atom transfer (1,5-HAT), single electron transfer (SET) oxidation and halide addition.

Cite this article

Zhu Haiqian , Shang Tianbo , Lu Zenghui , Luo Fang , Zhu Gangguo . Visible-Light Photocatalytic Remote Halo-difluoroalkylation of Thioalkynes[J]. Chinese Journal of Organic Chemistry, 2020 , 40(10) : 3410 -3419 . DOI: 10.6023/cjoc202005066

References

[1] For selected reviews, see:(a) Purser, S.; Moore, P. R. Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(b) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
[2] (a) Burke, T. R.; Lee, K. Acc. Chem. Res. 2003, 36, 426.
(b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
(c) An, L.; Tong, F.; Zhang, X. Acta Chim. Sinica 2018, 76, 977(in Chinese). (安伦, 童非非, 张新刚, 化学学报, 2018, 76, 977.)
(d) Tao, X.; Sheng, R.; Bao, K.; Wang, Y.; Jin, Y. Chin. J. Org. Chem. 2019, 39, 2726(in Chinese). (陶雪芬, 盛荣, 鲍堃, 王玉新, 金银秀, 有机化学, 2019, 39, 2726.)
(e) Dai, J.; Lei, W.; Liu, Q. Acta Chim. Sinica 2019, 77, 911(in Chinese). (戴建玲, 雷文龙, 刘强, 化学学报, 2019, 77, 911.)
[3] (a) Long, Z.-Y.; Chen, Q.-Y. J. Org. Chem. 1999, 64, 4775.
(b) Huang, X.-T.; Chen, Q.-Y. J. Org. Chem. 2001, 66, 4651.
(c) Ke, M.; Feng, Q.; Yang, K.; Song, Q. Org. Chem. Front. 2016, 3, 150.
(d) Feng, X.; Wang, X.; Chen, H.; Tang, X.; Guo, M.; Zhao, W.; Wang, G. Org. Biomol. Chem. 2018, 16, 2841.
(e) Li, K.-K.; Zhang, X.-X.; Chen, J.-C.; Gang, Y.; Yang, C.-H.; Zhang, K.-Y.; Zhou, Y.-Y.; Fan, B.-M. Org. Lett. 2019, 21, 9914.
[4] (a) He, Y.-T.; Wang, Q.; Li, L.-H.; Liu, X.-Y.; Xu, P.-F.; Liang, Y.-M. Org. Lett. 2015, 17, 5188.
(b) He, Y.-T.; Li, L.-H.; Wang, Q.; Wu, W.; Liang, Y.-M. Org. Lett. 2016, 18, 5158.
(c) Wang, Q.; Zheng, L.; He, Y.-T.; Liang, Y.-M. Chem. Commun. 2017, 53, 2814.
(d) Zhang, Y.; Zhang, J.; Hu, B.; Ji, M.; Ye, S.; Zhu, G. Org. Lett. 2018, 20, 2988.
(e) Liang, J.-Q.; Huang, G.-Z; Peng, P.; Zhang, T.-Y.; Wu, J.-J.; Wu, F.-H. Adv. Synth. Catal. 2018, 360, 2221.
[5] Zhang, B.-S.; Gao, L.-Y.; Zhang, Z.; Wen, Y.-H.; Liang, Y.-M. Chem. Commun. 2018, 54, 1185.
[6] Xiang, Y.; Li, Y.; Kuang, Y.; Wu, J. Chem.-Eur. J. 2017, 23, 1032.
[7] (a) Wang, S.; Zhang, J.; Kong, L.; Tan, Z.; Bai, Y.; Zhu, G. Org. Lett. 2018, 20, 5631.
(b) Guo, W.-H.; Zhao, H.-Y.; Luo, Z.-J.; Zhang, S.; Zhang, X. ACS Catal. 2019, 9, 38.
[8] Li, Y.; Li, H.; Hu, J. Tetrahedron 2009, 65, 478.
[9] Xu, T.; Cheung, C. W.; Hu, X. Angew. Chem., Int. Ed. 2014, 53, 4910.
[10] Zhong, J.-J.; Yang, C.; Chang, X.-Y.; Zou, C.; Lu, W.; Che, C.-M. Chem. Commun. 2017, 53, 8948.
[11] Li, G.; Cao, Y.-X.; Luo, C.-G.; Su, Y.-M.; Li, Y.; Lan, Q.; Wang, X.-S. Org. Lett. 2016, 18, 4806.
[12] Wu, G.; von Wangelin, A. J. V. Chem. Sci. 2018, 9, 1795.
[13] Shang, T.; Zhang, J.; Zhang, Y.; Zhang, F.; Li, X.-S.; Zhu, G. Org. Lett. 2020, 22, 3667.
[14] Xiong, Z.; Zhang, F.; Yu, Y.; Tan, Z.; Zhu, G. Org. Lett. 2020, 22, 4088.
[15] For selected reviews on photocatalysis, see:(a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
(b) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
(c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(d) Matsui, J. K.; Lang, S. B.; Heitz, D. R.; Molander, G. A. ACS Catal. 2017, 7, 2563.
[16] For selected reports on remote C-H halogention, see:(a) Kundu, R.; Ball, Z. T. Org. Lett. 2010, 12, 2460.
(b) Liu, T.; Myers, M. C.; Yu, J.-Q. Angew. Chem., Int. Ed. 2017, 56, 306.
(c) Herron, A. N.; Liu, D.; Xia, G.; Yu, J.-Q. J. Am. Chem. Soc. 2020, 142, 2766.
(d) Short, M. A.; Blackburn, J. M.; Roizen, J. L. Angew. Chem., Int. Ed. 2018, 57, 296.
[17] (a) Yang, Z.; Chen, X.; Kong, W.; Xia, S.; Zheng, R.; Luo, F.; Zhu, G. Org. Biomol. Chem. 2013, 11, 2175.
(b) Zhu, G.; Kong, W.; Feng, H.; Qian, Z. J. Org. Chem. 2014, 79, 1786.
[18] Nie, X.; Cheng, C.; Zhu, G. Angew. Chem., Int. Ed. 2017, 56, 1898.
[19] (a) Jin, W.; Wu, M.; Xiong, Z.; Zhu, G. Chem. Commun. 2018, 54, 7924.
(b) Wan, Y.; Shang, T.; Lu, Z.; Zhu, G. Org. Lett. 2019, 21, 4187.
[20] For selected reports on HAT of vinyl radicals, see:(a) Curran, D. P.; Shen, W. J. Am. Chem. Soc. 1993, 115, 6051.
(b) Bogen, S.; Malacria, M. J. Am. Chem. Soc. 1996, 118, 3992.
(c) Hu, M.; Fan, J.-H.; Liu, Y.; Ouyang, X.-H.; Song, R.-J.; Li, J.-H. Angew. Chem., Int. Ed. 2015, 54, 9577.
(d) Qiu, J.-K.; Jiang, B.; Zhu, Y.-L.; Hao, W.-J.; Wang, D.-C.; Sun, J.; Wei, P.; Tu, S.-J.; Li, G. J. Am. Chem. Soc. 2015, 137, 8928.
(e) Huang, L.; Ye, L.; Li, X.-H.; Li, Z.-L.; Lin, J.-S.; Liu, X.-Y. Org. Lett. 2016, 18, 5284.
(f) Gloor, C. S.; Dénès, F.; Renaud, P. Angew. Chem., Int. Ed. 2017, 56, 13329.
(g) An, X.-D.; Jiao, Y.-Y.; Zhang, H.; Gao, Y.; Yu, S. Org. Lett. 2018, 20, 401.
(h) Ratushnyy, M.; Parasram, M.; Wang, Y.; Gevorgyan, V. Angew. Chem., Int. Ed. 2018, 57, 2712.
(i) Wu, S.; Wu, X.; Wang, D.; Zhu, C. Angew. Chem., Int. Ed. 2019, 58, 1499.
(j) Yang, S.; Wu, X.; Wu, S.; Zhu, C. Org. Lett. 2019, 21, 4837.
(k) Liu, T.; Qu, C.; Xie, J.; Zhu, C. Chin. J. Org. Chem. 2019, 39, 1613(in Chinese). (刘涛, 屈川华, 谢劲, 朱成建, 有机化学, 2019, 39, 1613.)
(l) Li, H.; Guo, L.; Feng, X.; Huo, L.; Zhu, S.; Chu, L. Chem. Sci. 2020, 11, 4904.
(m) Wu, S.; Wu, X.; Wu, Z.; Zhu, C. Sci. China: Chem. 2019, 62, 1507.
Outlines

/