Recent Advances in Transition Metal-Promoted Multicomponent Cascade Reactions for Controlled Synthesis of Complex Carborane Derivatives

  • Zhang Huifang ,
  • Qiu Zaozao ,
  • Xie Zuowei
Expand
  • a School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007;
    b Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    c CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    d Department of Chemistry, The Chinese University of Hong Kong, Hong Kong

Received date: 2020-05-28

  Revised date: 2020-06-15

  Online published: 2020-06-19

Supported by

Project supported by the National Natural Science Foundation of China (No. 21772223), the Science and Technology Commission of Shanghai Municipality (No. 18590760800), the Chinese Academy of Sciences, and the Hong Kong Research Grants Council (No. 14306519).

Abstract

Carboranes are a class of carbon-boron molecular clusters with exceptional thermal and chemical stabilities. They are finding a variety of applications in medicine, materials, and coordination/organometallic chemistry as functional building blocks. To this end, the selective functionalization of carboranes has received growing research interests. Transition metal-promoted multicomponent cascade reactions are particularly attractive since they have the advantages of step- and atom- economy for the construction of complex products from readily available starting materials by simple operations. The recent advances in transition metal-promoted multicomponent cascade reactions for selective functionalization of carboranes are summarized in this focus review. The related reaction mechanisms and challenges in this research area are also discussed.

Cite this article

Zhang Huifang , Qiu Zaozao , Xie Zuowei . Recent Advances in Transition Metal-Promoted Multicomponent Cascade Reactions for Controlled Synthesis of Complex Carborane Derivatives[J]. Chinese Journal of Organic Chemistry, 2020 , 40(10) : 3203 -3213 . DOI: 10.6023/cjoc202005079

References

[1] (a) Grimes, R. N. Carboranes, 3rd ed., Academic Press, Amsterdam, 2016.
(b) Hosmane, N. S. Boron Science:New Technologies and Application, CRC Press, Boca Raton, FL, 2012.
[2] (a) Scholz, M.; Hey-Hawkins, E. Chem. Rev. 2011, 111, 7035.
(b) Leśnikowski, Z. J. J. Med. Chem. 2016, 59, 7738.
[3] (a) Hosmane, N. S.; Maguire, J. A. In Comprehensive Organometallic Chemistry Ⅲ, Vol. 3, Eds.:Crabtree, R. H.; Mingos, D. M. P., Elsevier, Oxford, 2007, Chapter 5.
(b) Xie, Z. Acc. Chem. Res. 2003, 36, 1.
(c) Yao, Z.-J.; Jin, G.-X. Coord. Chem. Rev. 2013, 257, 2522.
(d) Qiu, Z.; Ren, S.; Xie, Z. Acc. Chem. Res. 2011, 44, 299.
(e) Estrada, J.; Lavallo, V. Angew. Chem. Int. Ed. 2017, 56, 9906.
(f) El-Hellani, A.; Lavallo, V. Angew. Chem. Int. Ed. 2014, 53, 4489.
(g) Fisher, S. P.; Tomich, A. W.; Lovera, S. O.; Kleinsasser, J. F.; Guo, J.; Asay, M. J.; Nelson, H. M.; Lavallo, V. Chem. Rev. 2019, 119, 8262.
(h) Yao, Z.-J.; Yu, W.-B.; Lin, Y.-J.; Huang, S.-L.; Li, Z.-H.; Jin, G.-X. J. Am. Chem. Soc. 2014, 136, 2825.
(i) Gao, Y.; Guo, S.-T.; Cui, P.-F.; Aznarez, F.; Jin, G.-X. Chem. Commun. 2019, 55, 210.
(j) Cui, P.-F.; Gao, Y.; Guo, S.-T.; Lin, Y.-J.; Li, Z.-H.; Jin, G.-X. Angew. Chem. Int. Ed. 2019, 58, 8129.
[4] (a) Jude, H.; Disteldorf, H.; Fischer, S.; Wedge, T.; Hawkridge, A. M.; Arif, A. M.; Hawthorne, M. F.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2005, 127, 12131.
(b) Koshino, M.; Tanaka, T.; Solin, N.; Suenaga, K.; Isobe, H.; Nakamura, E. Science 2007, 316, 853.
(c) Dash, B. P.; Satapathy, R.; Gaillard, E. R.; Maguire, J. A.; Hosmane, N. S. J. Am. Chem. Soc. 2010, 132, 6578.
(d) Kung, C.-W.; Otake, K.; Buru, C. T.; Goswami, S.; Cui, Y.; Hupp, J. T.; Spokoyny, A. M.; Farha, O. K. J. Am. Chem. Soc. 2018, 140, 3871.
(e) Villagómez, C. J.; Sasaki, T.; Tour, J. M.; Grill, L. J. Am. Chem. Soc. 2010, 132, 16848.
(f) Qian, E. Q.; Wixtrom, A. I.; Axtell, J. C.; Saebi, A.; Rehak, P.; Han, Y.; Moully, E. H.; Mosallaei, D.; Chow, S.; Messina, M.; Wang, J.-Y.; Royappa, A. T.; Rheingold, A. L.; Maynard, H. D.; Kral, P.; Spokoyny, A. M. Nat. Chem. 2017, 9, 333.
(g) Saha, A.; Oleshkevich, E.; Viñas, C.; Teixidor, F. Adv. Mater. 2017, 29, 1704238.
(h) Guo, J.; Liu, D.; Zhang, J.; Zhang, J.; Miao, Q.; Xie, Z. Chem. Commun. 2015, 51, 12004.
(i) Jung, D.; Saleh, L. M. A.; Berkson, Z. J.; El-Kady, M. F.; Hwang, J. Y.; Mohamed, N.; Wixtrom, A. I.; Titarenko, E.; Shao, Y.; McCarthy, K.; Guo, J.; Martini, I. B.; Kraemer, S.; Wegener, E. C.; Saint-Cricq, P.; Ruehle, B.; Langeslay, R. R.; Delferro, M.; Brosmer, J. L.; Hendon, C. H.; Gallagher-Jones, M.; Rodriguez, J.; Chapman, K. W.; Miller, J. T.; Duan, X.; Kaner, R. B.; Zink, J. I.; Chmelka, B. F.; Spokoyny, A. M. Nat. Mater. 2018, 17, 341.
(j) Cui, P.-F.; Lin, Y.-J.; Li, Z.-H.; Jin, G.-X. J. Am. Chem. Soc. 2020, 142, 8532.
[5] (a) Mukherjee, S.; Thilagar, P. Chem. Commun. 2016, 52, 1070.
(b) Núñez, R.; Tarrés, M.; Ferrer-Ugalde, A.; de Biani, F. F.; Teixidor, F. Chem. Rev. 2016, 116, 14307.
(c) Li, X.; Yan, H.; Zhao, Q. Chem. Eur. J. 2016, 22, 1888.
[6] (a) Heying, T. L.; Ager, J. W.; Clark, S. L.; Mangold, D. J.; Goldstein, H. L.; Hillman, M.; Polak, R. J.; Szymanski, J. W. Inorg. Chem. 1963, 2, 1089.
(b) Fein, M. M.; Bobinski, J.; Mayes, N.; Schwartz, N.; Cohen, M. S. Inorg. Chem. 1963, 2, 1111.
(c) El-Zaria, M. E., Keskar, K., Genady, A. R., Ioppolo, J. A., McNulty, J.; Valliant, J. F. Angew. Chem. Int. Ed. 2014, 53, 5156.
[7] (a) Wu, S.; Jones, M., Jr. Inorg. Chem. 1986, 25, 4802.
(b) Bregadze, V. I. Chem. Rev. 1992, 92, 209.
(c) Viñas, C.; Benakki, R.; Teixidor, F.; Casabó, J. Inorg. Chem. 1995, 34, 3844.
(d) Gomez, F. A.; Johnson, S. E.; Hawthorne, M. F. J. Am. Chem. Soc. 1991, 111, 5915.
(e) Gomez, F. A.; Hawthorne, M. F. J. Org. Chem. 1992, 57, 1384.
(f) Anderson, K. P.; Mills, H. A.; Mao, C.; Kirlikovali, K. O.; Axtell, J. C.; Rheingold, A. L.; Spokoyny, A. M. Tetrahedron 2019, 75, 187.
[8] (a) Lu, J.-Y.; Wan, H.; Zhang, J.; Wang, Z.; Li, Y.; Du, Y.; Li, C.; Liu, Z.-T.; Liu, Z.-W.; Lu, J. Chem.-Eur. J. 2016, 22, 17542.
(b) Tang, C.; Xie, Z. Angew. Chem. Int. Ed. 2015, 54, 7662.
(c) Xie, Z. Sci. China Chem. 2014, 57, 1061.
(d) Coult, R.; Fox, M. A.; Gill, W. R.; Herbertson, P. L.; MacBride, J. A. H.; Wade, K. J. Organomet. Chem. 1993, 462, 19.
[9] (a) Tang, C.; Zhang, J.; Xie, Z. Angew. Chem. Int. Ed. 2017, 56, 8642.
(b) Tang, C.; Zhang, J.; Zhang, J.; Xie, Z. J. Am. Chem. Soc. 2018, 140, 16423.
[10] Lyu, H.; Zhang, J.; Yang, J.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2019, 141, 4219.
(b) Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2015, 137, 3502.
(c) Quan, Y.; Xie, Z. Angew. Chem. Int. Ed. 2016, 55, 1295.
(d) Zhang, X.; Yan, H. Chem. Sci. 2018, 9, 3964.
(e) Zhang, X.; Zheng, H.; Li, J.; Xu, F.; Zhao, J.; Yan, H. J. Am. Chem. Soc. 2017, 139, 14511.
(f) Cao, K.; Huang, Y.; Yang, J.; Wu, J. Chem. Commun. 2015, 51, 7257.
(g) Lin, F.; Yu, J.-L.; Shen, Y.; Zhang, S.-Q.; Spingler, B.; Liu, J.; Hong, X.; Duttwyler, S. J. Am. Chem. Soc. 2018, 140, 13798.
(h) Xu, T. T.; Cao, K.; Zhang, C. Y.; Wu, J.; Ding, L. F.; Yang, J. Org. Lett. 2019, 21, 9276.
(i) Xu, T. T.; Cao, K.; Zhang, C. Y.; Wu, J.; Jiang, L.; Yang, J. Chem. Commun. 2018, 54, 13603.
[11] (a) Liang, X.; Shen, Y.; Zhang, K.; Liu, J.; Duttwyler, S. Chem. Commun. 2018, 54, 12451.
(b) Lin, F.; Shen, Y.; Zhang, Y.; Sun, Y.; Liu, J.; Duttwyler, S. Chem. Eur. J. 2018, 24, 551.
(c) Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem. Int. Ed. 2015, 54, 10623.
(d) Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2014, 136, 15513.
(e) Mirabelli, M. G. L.; Sneddon, L. G. J. Am. Chem. Soc. 1988, 110, 449.
(f) Wu, J.; Cao, K.; Xu, T.-T.; Zhang, X.-J.; Jiang, L.; Yang, J.; Huang, Y., RSC Adv. 2015, 5, 91683.
(g) Shen, Y.; Pan, Y.; Zhang, K.; Liang, X.; Liu, J.; Spingler, B.; Duttwyler, S. Dalton Trans. 2017, 46, 3135.
(h) Shen, Y.; Zhang, K.; Liang, X.; Dontha, R.; Duttwyler, S. Chem. Sci. 2019, 10, 4177.
(i) Cheng, R.; Qiu, Z.; Xie, Z. Chem. Eur. J. 2020, 26, 7121.
[12] (a) Chen, Y.; Au, Y. K.; Quan, Y.; Xie, Z. Sci. China Chem. 2019, 62, 74.
(b) Quan, Y.; Tang, C.; Xie, Z. Chem. Sci. 2016, 7, 5838.
[13] Cheng, R.; Qiu, Z.; Xie, Z. Nat. Commun. 2017, 8, 14827.
[14] Qiu, Z.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2013, 135, 12192.
[15] (a) Cui, C. X.; Zhang, J.; Qiu, Z.; Xie, Z. Dalton Trans. 2020, 49, 1380.
(b) Au, Y. K.; Lyu, H.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2020, 142, 6940.
(c) Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem. Int. Ed. 2016, 55, 11840.
(d) Cao, K.; Xu, T.-T.; Wu, J.; Jiang, L.; Yang, J. Chem. Commun. 2016, 52, 11446.
(e) Li, C.-X.; Zhang, H.-Y.; Wong, T.-Y.; Cao, H.-J.; Yan, H.; Lu, C.-S. Org. Lett. 2017, 19, 5178.
[16] Lyu, H.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2016, 138, 12727.
[17] Lyu, H.; Quan, Y.; Xie, Z. Chem. Eur. J. 2017, 23, 14866.
[18] (a) Quan, Y.; Qiu, Z.; Xie, Z. Chem. Eur. J. 2018, 24, 2795.
(b) Quan, Y.; Xie, Z. Chem. Soc. Rev. 2019, 48, 3660.
(c) Yu, W.-B.; Cui, P.-F.; Gao, W.-X.; Jin, G.-X. Coord. Chem. Rev. 2017, 350, 300.
(d) Zhang, X.; Yan, H. Coord. Chem. Rev. 2019, 378, 466.
[19] Qiu, Z.; Ren, S.; Xie, Z. Acc. Chem. Res. 2011, 44, 299.
[20] Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2009, 131, 2084.
[21] Deng, L.; Chan, H.-S.; Xie, Z. J. Am. Chem. Soc. 2006, 128, 7728.
[22] Ren, S.; Chan, H.-S.; Xie, Z. Organometallics 2009, 28, 4106.
[23] Ren, S.; Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2012, 134, 3242.
[24] Ren, S.; Chan, H.-S.; Xie, Z. J. Am. Chem. Soc. 2009, 131, 3862.
[25] Ren, S.; Qiu, Z.; Xie, Z. Organometallics 2012, 31, 4435.
[26] Ren, S.; Qiu, Z.; Xie, Z. Angew. Chem. Int. Ed. 2012, 51, 1010.
[27] Quan, Y.; Zhang, J.; Xie, Z. J. Am. Chem. Soc. 2013, 135, 18742.
[28] Zhang, J.; Quan, Y.; Lin, Z.; Xie, Z. Organometallics 2014, 33, 3556.
[29] Cui, C.-X.; Ren, S.; Qiu, Z.; Xie, Z. Dalton Trans. 2018, 47, 2453.
[30] Quan, Y.; Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2014, 136, 7599.
[31] Wang, Z.; Ye, H.; Li, Y.; Li, Y.; Yan, H. J. Am. Chem. Soc. 2013, 135, 11289.
[32] Zhang, R.; Zhu, L.; Liu, G.; Dai, H.; Lu, Z.; Zhao, J.; Yan, H. J. Am. Chem. Soc. 2012, 134, 10341.
[33] Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2010, 132, 16085.
[34] Lyu, H. Quan, Y.; Xie, Z. Chem. Sci. 2018, 9, 6390.
[35] Au, Y.-K.; Lyu, H.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2019, 141, 12855.
[36] Au, Y.-K.; Lyu, H.; Quan, Y.; Xie, Z. Chin. J. Chem. 2020, 38, 383.
[37] (a) Li, J.; Logan, C. F.; Jones, M. Jr. Inorg. Chem. 1991, 30, 4866.
(b) Zheng, Z.; Jiang, W.; Zinn, A. A.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 1995, 34, 2095.
(c) Harakas, G.; Vu, T.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1998, 120, 6405.
(d) Viñas, C.; Barberà, G.; Oliva, J. M.; Teixidor, F.; Welch, A. J.; Rosair, G. M. Inorg. Chem. 2001, 40, 6555.
[38] Ge, Y.; Zhang, J.; Qiu, Z.; Xie, Z. Angew. Chem. Int. Ed. 2020, 59, 4851.
[39] (a) Poater, J.; Solà, M.; Viñas, C.; Teixidor, F. Chem. Eur. J. 2016, 22, 7437.
(b) Axtell, J. C.; Saleh, L. M. A.; Qian, E. A.; Wixtrom, A. I.; Spokoyny, A. M. Inorg. Chem. 2018, 57, 2333.
(c) Bolli, C.; Derendorf, J.; Keßler, M.; Knapp, C.; Scherer, H.; Schulz, C.; Warneke, J. Angew. Chem. Int. Ed. 2010, 49, 3536.
(d) Kirchmann, M.; Wesemann, L. Dalton Trans. 2008, 2144.
(e) Messina, M. S.; Axtell, J. C.; Wang, Y.; Chong, P.; Wixtrom, A. I.; Kirlikovali, K. O.; Upton, B. M.; Hunter, B. M.; Shafaat, O. S.; Khan, S. I.; Winkler, J. R.; Gray, H. B.; Alexandrova, A. N.; Maynard, H. D.; Spokoyny, A. M. J. Am. Chem. Soc. 2016, 138, 6952.
(f) Peryshkov, D. V.; Strauss, S. H. Inorg. Chem. 2017, 56, 4072.
(g) Wang, W.; Wang, X.; Cao, J.; Liu, J.; Qi, B.; Zhou, X.; Zhang, S.; Gabel, D.; Nau, W. M.; Assaf, K. I.; Zhang, H. Chem. Commun. 2018, 54, 2098.
(h) Assaf, K. I.; Ural, M. S.; Pan, F.; Georgiev, T.; Simova, S.; Rissanen, K.; Gabel, D.; Nau, W. M. Angew. Chem. Int. Ed. 2015, 54, 6852.
(i) Assaf, K. I.; Hennig, A.; Peng, S.; Guo, D.-S.; Gabel, D.; Nau, W. M. Chem. Commun. 2017, 53, 4616.
(j) Jung, D.; Saleh, L. M. A.; Berkson, Z. J.; El-Kady, M. F.; Hwang, J. Y.; Mohamed, N.; Wixtrom, A. I.; Titarenko, E.; Shao, Y.; McCarthy, K.; Guo, J.; Martini, I. B.; Kraemer, S.; Wegener, E. C.; Saint-Cricq, P.; Ruehle, B.; Langeslay, R. R.; Delferro, M.; Brosmer, J. L.; Hendon, C. H.; Gallagher-Jones, M.; Rodriguez, J.; Chapman, K. W.; Miller, J. T.; Duan, X.; Kaner, R. B.; Zink, J. I.; Chmelka, B. F.; Spokoyny, A. M. Nat. Mater. 2018, 17, 341.
[40] Zhang, Y.; Sun, Y.; Lin, F.; Liu, J.; Duttwyler, S. Angew. Chem. Int. Ed. 2016, 55, 15609.
[41] Zhang, Y.; Wang, T.; Wang, L.; Sun, Y.; Lin, F.; Liu, J.; Duttwyler, S. Chem. Eur. J. 2018, 24, 15812.
[42] Cheng, R.; Li, B.; Wu, J.; Zhang, J.; Qiu, Z.; Tang, W.; You, S. L.; Tang, Y.; Xie, Z. J. Am. Chem. Soc. 2018, 140, 4508.
Outlines

/